

UNIVERZA V MARIBORU

Fakuiteta za kemijo in kemijsko tehnologijo

JURE STRNAD

NAVODILA ZA IZDELAVO RAČUNALNIŠKE SIMULACIJE BIOPROCESA V PROGRAMU SUPERPRO DESIGNER[®] V5.5

Maribor, november 2006

VSEBINA

1	UVOD	7
2	OSNOVE DELA S SIMULATORJEM	9
	2.1 Primer 1	13
3	REGISTRACIJA KOMPONENT IN MEŠANIC	15
4	PROCESNA SHEMA IN TOKOVNICE	21
5	PROCESNE OPERACIJE	25
	 5.1 CHARGE	
6	DEFINIRANJE LASTNOSTI PROCESNIH ENOT	
	 6.1 EQUIPMENT 6.2 PURCHASE COST 6.3 COST ADJUSTMENTS 6.4 CONSUMABLES 	
7	ČASOVNA USKLADITEV NAČRTOVANEGA PROC	ESA 41
8	EKONOMSKI PARAMETRI	
9	IZPIS REZULTATOV	
10	ZAKLJUČEK	51

SEZNAM SLIK IN PREGLEDNIC

Preglednica 2 – 1: Fizikalne lastnosti komponent A, B in C.	14
Slika 2 – 1: Odpiranje novega dokumenta	9
Slika 2 – 2: Izbira načina obratovanja	10
Slika 2 – 3: Osnovno opravilno polje.	10
Slika 2 – 4: Meni za nastavljanje merskih enot	11
Slika 2 – 5: Procesna shema za primer 1	13
Slika 3 – 1: Ukazno okence registracije komponent	15
Slika 3 – 2: Stvaritev nove komponente.	16
Slika 3 – 3: Okence za podajanje lastnosti komponente A	17
Slika 3 – 4: Ekonomski parametri komponente A.	18
Slika 3 – 5: Registracija mešanic	19
Slika 3 – 6: Okence za podajanje lastnosti mešanic	20
Slika 4 – 1: Reaktor iz primera 1	21
Slika 4 – 2: Opisna datoteka filtra iz primera 1.	22
Slika 4 – 3: Primer procesne sheme	23
Slika 4 – 4: Ukazno okence Simulation Data za vtok heptana v reaktor.	24
Slika 5 – 1: Ukazno okence za urejanje operacij v reaktorju.	25
Slika 5 – 2: Prikaz jezička Operation Conditions procesne operacije Charge.	26
Slika 5 – 3: Ukazno okence za podajanje Master-Slave odnosa	27
Slika 5 – 4: Podajanja parametrov za emisije	28
Slika 5 – 5: Ukazno okence operacije Transfer Out.	29
Slika 5 – 6: Ukazno okence operacije React.	30
Slika 5 – 7: Jeziček Reactions procesne operacije React.	31
Slika 5 – 8: Ukazno okence View Reaction Stoichiometry Details.	32
Slika 5 – 9: Jeziček Labor procesne operacije Charge Solvent	33
Slika 5 – 10: Ukazno okence filtracije.	34
Slika 5 – 11: Ukazno okence za operacijo Cake Wash.	35
Slika 6 – 1: Ukazno okence za specifikacijo dimenzij reaktorja	37
Slika 6 – 2: Jezicek za nastavitev nabavne cene procesne enote	38
Slika 6 – 3: Nastavitev mnoziteljev za izračun nakupne čene reaktorja.	39
Slika 6 – 4: Nastavitev parametrov potrosnega materiala.	40
Slika 7 – 1: Ganttov diagram za proces iz primera 1.	41
Slika 7 – 2: Aktivacija ukaza Recipe Scheduling Info.	42
Slika 7 – 3: Nastavitev casovnin parametrov za celotni proces	42
Silka 7 – 4: Ganttov diagram za pet zaporednin sarz	43
Slika 7 – 5: Ukazno okence Procedure Data za reaktor iz primera 1.	44
Silka 7 – 6: Modificirani Ganttov diagram za proces iz primera 1	44
Siika $\sigma = 1$: Niasiiikacija tokov za primer 1	45
Silka $\sigma = 2$: Ukazno okence Capital Cost Adjustments	40
Silka $\sigma = 3$: Ukazno okence Uperating Lost Factors	4/
Siika 9 – T. Ukazno okence za nastavitev oblike izpisa	49

UPORABLJENI SIMBOLI

С	množinska koncentracija	mol/L
q_m	masni pretok	kg/s
q_V	prostorninski pretok	L/s
Т	absolutna temperatura	К
t	čas	S

UPORABLJENE KRATICE

CAS	-	Chemical Abstracts Service registry number
DIPPR	-	Design Institute for Physical Property Data

ZNAČILNE OKRAJŠAVE V SIMULATORJU

CIP	Clean-In-Place	Čiščenje opreme
CSTR	Continuous Stirred-Tank Reactor	Mešalni reaktor
EBA	Expanded Bed Affinity Chromatography	Afinitetna kromatografija s fluidiziranim slojem stacionarne faze
IRR	Internal Rate of Return	Interna stopnja donosnosti
LOD	Loss on Drying	Izgube pri sušenju
NPV	Net Present Value	Neto sedanja vrednost (NSV)
РВА	Packed Bed Affinity Chromatography	Afinitetna kromatografija z nasutim slojem stacionarne faze
PFR	Plug Flow Reactor	Cevni reaktor
QC	Quality control	Kontrola kakovosti
ROI	Return of Investment	Povračilo investicij
SIP	Steam-In-Place	Parna sterilizacija

1 UVOD

Študenti študijske smeri biokemijska tehnika bodo izdelali simulacijo bioprocesa v programskem okolju SuperPro Designer[®], različica 5.5.¹ Delovanje programa je slično delovanju tehničnega simulatorja Aspen Plus.²

Simulatorje, bodisi za klasične kemijske procese, bodisi za biokemijske procese, uporabljamo zato, da na enostaven, hiter in ekonomsko učinkovit način obravnavamo 'kaj če bi' scenarije. To pomeni, da lahko izbiramo različne procesne sheme in simulacije le-teh med sabo primerjamo, ne da bi potrebovali fizično postavljen proces. Poleg načrtovanja nam simulatorji omogočajo tudi optimizacijo že obstoječih procesov, ekonomsko analizo predlaganih procesov itd.

Podjetje Intelligen je vložilo veliko truda v izdelavo orodij za ocenitev okoljskih učinkov načrtovanih procesov. S tem nam simulator SuperPro Designer[®] ponuja ne le odlična orodja za simulacijo masnih in ekonomskih bilanc, temveč tudi možnost ocenitve stroškov za obdelavo odpadkov, preden se fizični proces postavi.

Oba v tekstu omenjena simulatorja nista edina tovrstna programa na tržišču. Za bioprocese je primeren simulator Aspen Batch Plus 2004, ki je manj intuitiven ter praktičen, kot npr. SuperPro Designer[®]. Poznamo še simulatorje Design II for Windows, ProSimPlus, Virtual Materials Group VMGSim, ChemStations ChemCAD, Hyprotech HYSIM itd.

SuperPro Designer[®] je v prvi vrsti namenjen simuliranju biotehnoloških procesov, procesov za proizvodnjo finih kemikalij in farmacevtskih procesov. V študijske namene uporabljamo akademsko različico programa 5.5.

Omenjeni simulator je namenjen poučevanju na področjih:

- načrtovanje procesov,
- biokemijska tehnika,
- farmacevtska tehnika,
- živilska tehnika,
- načrtovanja procesov za obdelavo odpadnih vod in emisij.

¹ Proizvajalca Intelligen Inc., ZDA, <u>www.intelligen.com</u>, 10. 11. 2006.

² Proizvajalca AspenTechnology, ZDA, <u>www.aspentech.com</u>, 10. 11. 2006.

2 OSNOVE DELA S SIMULATORJEM

Simulator SuperPro Designer[®] zaženemo s klikom na ikono na namizju ali ga poiščemo v **Start \ All Programs \ SuperPro Designer 5.5 \ SuperPro Designer 5.5**. V prvem aktivnem oknu (slika 2 – 1) izberemo **Start New Flowsheet**.

🗖 What Would You Like To Do ?
Start a New Flowsheet Open Your Last Flowsheet C:\Documents and Settings\\Test\Procesna shema1.spf Open Another Flowsheet C:\Documents and Settings\\Monoklonska - nacrtovanje.spf Will Choose Later
OK Help Do Not Show This Dialog Again

Slika 2 – 1: Odpiranje novega dokumenta.

Kadar imamo že ustvarjeno datoteko, označimo možnost **Open Another Flowsheet** ali pa označimo **Open Your Last Flowsheet**, če hočemo odpreti zadnje uporabljeno datoteko. Nato kliknemo **OK**.

Ob kreaciji nove procesne datoteke simulator zahteva, da mu podamo način obratovanja, torej ali bo proces deloval šaržno ali kontinuirno, ter letni obratovalni čas (prednastavljena vrednost je 330 dni), kar je razvidno iz slike 2 – 2.

Slika 2 – 2: Izbira načina obratovanja.

V biokemijskih in farmacevtskih procesih prevladuje šaržni način obratovanja. Opozorili bi, da je program zmožen simulacije kombiniranega načina obratovanja (semikontinuirno – Fed Batch Mode). Način obratovanja in obratovalni čas je možno kadarkoli spremeniti v meniju Tasks \ Set Mode of Operation.

Osnovno opravilno okence je sestavljeno iz ukazne vrstice, gumbov za bližnjice, vrstice za oblikovanje na desni strani okenca, ter osrednjega risalnega prostora. Vsi elementi so razvidni iz slike 2 – 3.

SuperPro Designer - [Flowsh1]	
File Edit Unit Procedures Tasks View Reports Databanks Window Help ukazna vrstica	_ 8 ×
D 🖆 🖬 🕼 👃 🛍 🕒 🛄 🔽 🕮 🥵 👙 💱	
■ ▶ ■ @ 吾 串 +8 +8 智良	
bližnjice oblikovanje	→ T \ \ \ □
risalni prostor	
NU NU	n ///

Slika 2 – 3: Osnovno opravilno polje.

Ukazna vrstica vsebuje menije: File, Edit, Unit Procedures, Tasks, View, Reports, Databanks, Windows in Help. Začetniki v uporabi simulatorja bodo največ uporabljali naslednje menije:

- **File** shranjevanje datotek, tiskanje,
- Unit Procedures izbor procesnih enot,
- **Tasks** registracija komponent in mešanic,
- **Reports** izpis rezultatov.

Bralce opozarjamo, da naj pogosto shranjujejo svojo delo! Dodatno bi omenili, da simulator žal ne vsebuje ukaza **Undo**, ki bi razveljavil našo početje. Ravno zaradi tega bi bralcem priporočali, da si spremembe v simulaciji beležijo, da bodo vedeli, kje so kaj spremenili, če bi bilo treba kakšne prejšnje nastavitve obnoviti.

V naslednjih poglavjih bomo prikazali način dela s simulatorjem, od registracije komponent do nastavljanja vseh potrebnih parametrov.

Ko imamo izdelano procesno shemo z vsemi ustrezno definiranimi parametri, lahko zaženemo simulacijo. Ukaz za izračun masnih bilanc procesa je **Tasks \ Solve M&E Balances,** ukaz za izvedbo ekonomske simulacije je **Tasks \ Perform Economic Calculations**. Alternativno lahko uporabimo bližnjici **Ctrl+3** in **Ctrl+6** oz. gumb na ukazni vrstici, **I**.

Preden uporabnik prične s simuliranjem procesa, si je priporočljivo ogledati splošne nastavitve programa s klikom Edit \ Flowsheet Options. Za začetnike je najbolj pomemben podmeni Edit \ Flowsheet Options \ Preferences \ Physical Units Options (slika 2 – 4), s katerim simulatorju podamo merske enote parametrov.

Physical Units Options		
Common Properties	In Operations, Equipment	In Streams
Composition	Time (Durations) min 👤	Mass kg
Concentration 9/L	Mass kg 👤	Volume L
Density 9/L	Volume L	Time Reference
Temperature C	Mass Throughput kg/h	for Flows
Pressure bar	Volume Throughput	
Pressure Drop bar/m	Discrete Throughput entities/h	Used w/ Agents
Dimensions mm/cm/m	Mass Throughput [(kg/h)/m	Mass kg
Area m2	Volume Throughput	Volume L
Velocity cm/h	per Length	Mass Flow kg/h
Heating/Cooling Duty kcal/h	Mass Flux kg/m2·h 💽	Volume Flow L/h
Heat Transfer Coef. (HTC) Watt/m2-K	Mass Flux Per Vol. 🛛 kg/m3-h 🛛 🛨	Volume Flux L/m2-min
HTC x Area kcal/h-°C	Volume Flux L/m2-h	Gas Volume Flow m3/s
Heating/Cooling Rate C/min	Power KW	Volume Flow L/min-m
Mass-Heat Capacity kcal/°C	Specific Power (per Volume) kW/m3	percengui
Specific Energy kcal/kg	Specific Power (per Area) kw/m2	
Specific Volume m3/kg	Specific Power	
Surface Density kg/m2	Specific Power	
Viscosity CP	(per Vol. Throughput) kW/(m3/h) 上	Help
Surf. Tension dyn/cm	Specific Power	
Diffusivity cm2/s	(per Mass-Throughput-Length) ^{kW/} ((kg/h)) .	
Force IN	Specific Power KW/((m3/h) (per Vol. Throughput-Length)	Cancel
	Specific Power KW/(Entity/ (per Discrete Throughput)	
	Area per Unit Volume m2/m3	OK

Slika 2 – 4: Meni za nastavljanje merskih enot.

Na sliki 2 – 4 so podane prednastavljene enote parametrov, ki niso vse v skladu z enotami SI. **Pri vajah je obvezna uporaba enot SI!**³ SuperPro Designer[®] nudi uporabniku dinamično pomoč, katero aktiviramo s pritiskom tipke **F1** oz. z menija **Help** v ukazni vrstici.

Poglavja, ki sledijo, se nanašajo na vzorčni proces iz primera 1. Slike, ki se nanašajo na druge procese, so v tekstu posebej omenjene.

³ P. Glavič, *Mednarodni sistem merskih enot in znakov*, Fakulteta za kemijo in kemijsko tehnologijo, Maribor, 1997

2.1 Primer 1

Simulirali bomo dvostopenjski proces. V reaktor (oznaka P-1/V-101) vodimo 50 kg neznane komponente A in 40 kg neznane komponente B. V reaktor dodatno vodimo 800 kg heptana, komponenti A in B sta v njem topni. Prostorninski pretok heptana, $q_{V, \text{ heptan}} = 100 \text{ L/min}$, masna vtoka komponent A in B sta, $q_{m, A} = q_{m, B} = 20 \text{ kg/min}$. Slika 2 – 5 prikazuje procesno shemo za primer 1.

Slika 2 – 5: Procesna shema za primer 1.

Heptan je lahko hlapljivo organsko topilo, zato je potrebno upoštevati pojav emisij v iztoku S-104. Komponenti A in B v reaktorju reagirata v neznan produkt C, ki ni topen v heptanu. Končna temperatura v reaktorju je, T = 323 K, čas reakcije je, t = 6 h. Maksimalna delovna prostornina reaktorja je 80 % celotne prostornine. Obseg reakcije je 95 %, pogonsko sredstvo je nizkotlačna para. Iztok iz reaktorja vodimo v filter (oznaka P-2/PFF-101, tip Plate and Frame Filter).

Ker je komponenta C netopna v heptanu, jo lahko ločimo v filtru in sicer 95 % komponente C ostane na filtru kot kolač. Del heptana, komponente A in komponente B se zadrži v mokri oborini in sicer 35 % (vrednost **LOD**). Oborino spiramo s čistim heptanom, čas trajanja pranja je, t = 30 min. Način pranja je 'slurry' – čisti heptan in oborina se zmešata in ponovno prefiltirata. Masni pretok iztoka iz filtra je, $q_m = 10$ kg/min.

Operacija **Transfer Out** iz reaktorja je v **Master-Slave** odnosu (obe operaciji trajata enako dolgo) z operacijo **Filter** v filtrski enoti. Čas priprave procesne enote (**Setup Time**) za operacije **Charge Solvent**, **Charge A** in **Charge B** je, t = 5 min. Letni delovni čas (**Annual Operating Time**) je 240 h, letno bi izvedli 20 šarž. V vsaki delovni izmeni, t = 12 h, se izvede ena šarža. Opozorili bi, da je čas trajanja šarže krajši od 12 h, a primer predpostavlja, da se

novi cikel procesa ne začne v prejšnji izmeni in se nadaljuje v naslednjo. Fizikalne lastnosti komponent A, B in C so zbrane v preglednici 2 – 1.

Preglednica 2 – 1: Fizikalne lastnosti komponent A, B in C.

Lastnost		Komponenta			
Lastitust	Α	В	С		
Molska masa/(g/mol)	150	25	175		
Nakupna masna cena/(USD/kg)	10	15	/		
Prodajna masna cena/(USD/kg)	/	/	300		

Procesne operacije v reaktorju:

- **Charge** Solvent (heptan),
- Charge A,
- Charge B,
- React (Batch Stoichiometric Reaction),
- Transfer Out.

Procesne operacije v filtru:

- Filtration,
- Cake Wash,
- Transfer Out.

3 REGISTRACIJA KOMPONENT IN MEŠANIC

Prednost SuperPro Designer[®]-ja v primerjavi z drugimi komercialnimi simulatorji so njegove obširne podatkovne zbirke, tako za biokomponente (npr. proteini), kot tudi klasične kemijske komponente (npr. natrijev hidroksid – NaOH). Simulator uporablja tri podatkovne zbirke za pogosto uporabljene komponente (zbirke **Designer**, **DIPPR** – Design Institute for Physical Property Data in **User**). Baza **User** je namenjena shranjevanju lastnosti komponent, ki jih uporabnik vstavi naknadno in je prazna, dokler jo uporabnik lastnoročno ne izpolni. Drugi dve zbirki vsebujeta prednastavljena spiska komponent. Ogled podatkovnih zbirk za čiste komponente je možen na lokaciji **Databanks \ Pure Components** ali s pritiskom tipke **F2.**

Preden pričnemo risati procesno shemo, je treba registrirati komponente v procesu. Z drugimi besedami, simulatorju je potrebno podati spisek vseh komponent, ki se v procesu pojavijo, tudi produkte! Za primer 1 moramo v procesno datoteko vstaviti komponente A, B in C, ter heptan. V ukazni meni registracije komponent vstopimo s **Tasks \ Edit Pure Components** ali s kombinacijo tipk **Ctrl+0**. Simulator v spisku komponent vselej privzeto vključi dušik, kisik in vodo, ki se pojavijo pri skoraj vseh procesih. Ukazno okence za registracijo komponent je prikazano na sliki 3 – 1.

Register / Edit Pure Components					×
Pure Components in Database			Re	gistered Pure Components	
Source DB Designer		Use Defin	r ed	Name	Local Name
Acenaphthene Acetal Acetaldehyde Acetaldol Acetanide Acetone Acetone Acetone Acetone Acetophenon Acetylene Acrolein Acrylenide Acrylic Acid Acrylonitrile Adenine	>> Register >> >> Phys Props >> >> Other Props >> << Deposit <<	1 X 2 X 3 X 4 C 5 C 6 C 7 C	A B C Heptane Nitrogen Oxygen Water		A B C Heptane Nitrogen Oxygen Water
JAdiponitrile Display By O Name Local Name Trade Name CAS Number	lp	Primary Bion (none) Water Conter	w De nass Component I It 80,00 % (wt)	lete Water Component Water	Properties Activity Ref. Component (none) Basis 0,00 U/mg

Slika 3 – 1: Ukazno okence registracije komponent.

Uporabnik se mora najprej odločiti, katero zbirko podatkov bo uporabil (**Designer**, **User**, **DIPPR**). Za neizkušene uporabnike je ustrezna podatkovna zbirka **Designer**. Komponente v seznamu na levi strani ukaznega okenca lahko uporabnik razporedi glede na abecedni red industrijskega, udomačenega (lokalnega) ali kemijskega imena, ter glede na številko CAS (Chemical Abstracts Service registry number). Komponento poiščemo iz seznama tako, da v prazno okence nad spiskom komponent vpišemo ime (aktivirana je recimo razporeditev spiska glede na funkcijo **Name**), recimo heptan (ang. heptane!). Komponento lahko alternativno poiščemo na seznamu tako, da si pomagamo z drsniki. Označeno komponento vstavimo v proces z ukazom **Register** ali z dvoklikom na njeno oznako. Če smo pomotoma vstavili napačno komponento, označimo njeno vrstico (kot npr. komponenta A na sliki 3 - 1) in pritisnemo tipko **Delete** na tipkovnici ali v ukaznem okencu. Za primer 1 registriramo heptan.

Pogosto, predvsem pri bioprocesih, podatkovne zbirke ne vsebujejo komponent, ki bi jih radi uporabili (recimo endotoksini, plazmidi, lipidi idr.). V takšnem primeru jih mora uporabnik lastnoročno vstaviti. Dodatno bi opozorili, da so podani parametri biokomponent pogosto pomanjkljivi, zato jih je treba preveriti! Kot primer, podatkovna zbirka simulatorja **Design** vsebuje definirano komponento proteini, pri kateri so fizikalne lastnosti slične tem od vode. Iz tega sledi pomembna ugotovitev: kadar nimamo na voljo ustreznih podatkov za novo definirane komponente, se poslužimo poenostavitve in uporabimo fizikalne lastnosti vode za to komponento. Ta poenostavitev se pogosto uporablja pri simuliranju bioprocesov.

Novo komponento (npr. neznano komponento A iz primera 1) dodamo v podatkovno zbirko tako, da kliknemo v ukaznem okencu registracije gumb **New**. Pojavi se novo ukazno okence s šestimi praznimi prostori (slika 3 - 2), ki jih je potrebno izpolniti.

New Component Definition				
Name A	(unique)			
CAS Number A	(unique)			
Trade Name A	(unique)			
Local Name A	(unique)			
Formula				
Company ID A				
Source for Default Property Values				
Component Name Water	Ŧ			
Location				
O In Database Designer 🛓 🔘 List of Registered Components				
OK Cancel	Help			

Slika 3 – 2: Stvaritev nove komponente.

Simulator ne zahteva, da mu podamo natančne podatke za komponente oznake, temveč je potrebno samo vse prostorčke izpolniti z nekimi oznakami. Bralce opozarjamo, da se v vseh rezultatskih datotekah izpišejo lokalna oz. udomačena imena komponent. Sistem ne

dovoljuje, da bi dve različni komponenti v procesu imeli enako lokalno ime! Kadar simulatorju podamo novo komponento, je važno, da izpolnimo polje **Name** brez napak. Od trenutka, ko ustvarimo novo komponento, te oznake ni več možno kasneje spremeniti!

Na dnu okenca je možno specificirati fizikalne lastnosti novih komponent (**Source for Default Property Values**). Prednastvaljene so vedno fizikalne lastnosti vode. Možno pa je prekopirati fizikalne lastnosti kakšne druge že obstoječe komponente. Lastnosti posameznih komponent, ki niso vključene v podatkovne zbirke, lahko poiščemo glede na številko CAS snovi na svetovnem spletu in jih simulatorju dodamo.

Ko smo definirali nove komponente (v primeru 1 so to A, B in C), se te pojavijo v seznamu registriranih komponent, kjer so uporabniško definirane komponente označene s križcem. Registriranim komponentam lahko kadarkoli podamo, spremenimo ali dodamo nove parametre. Najprej označimo celotno vrstico komponente in nato kliknemo ukaz **Properties**. Odpre se okence z jezički na vrhu le-tega. Vsak jeziček odpre podmenije za določanje konstantnih fizikalnih lastnosti, temperaturno odvisnih fizikalnih lastnostih, ekonomskih in okoljskih parametrov, ter regulativnih podatkov. Pri biokemijskih in farmacevtskih procesih biokomponentam pogosto podamo samo ustrezno molsko maso, ostale fizikalne lastnosti prekopiramo od vode, razen če imamo na razpolago verodostojne podatke, kar je pri načrtovanju inovativnih bioprocesov bolj redkost kot pravilo. Ukazno okence za podajanje lastnosti komponente A je prikazano na sliki 3 – 3.

Pure Component Properties for : A	×
IDs Physical (Constant) Physical (T-dependent) Aqueous Economics Pollutant Categories	
Main Properties	
MW 150,00 g/gmol	
Enthalpy of Formation 285830,00 J/gmol	
Normal Boiling Point 100,00 °C	
Normal Freezing Point 0,00 °C	
Critical Properties	
Temperature 374,19 °C	
Pressure 221,20 bar	
Compressibility Factor 0,2350	
Acentric Factor (Omega) 0,3440	
Miscellaneous	
Henry's Const.x10**4 0,000000 atm-m3/gmol	
Particle Size 0,00 micron	
Default Volumetric Coefficient 1,00	
OK Cancel Help)

Slika 3 – 3: Okence za podajanje lastnosti komponente A.

Tako lahko spremenimo prednastavljene vrednosti lastnosti komponent A, B in C glede na podatke iz preglednice 2 – 1.

Bralce bi posebej opozorili na jeziček **Economics**, v katerem moramo podati masne nabavne (**Purchase Price**) in prodajne cene (**Selling Price**) komponent. Prav tako lahko definiramo masne stroške obdelave odpadnih komponent (**Disposal Cost**). Simulator nam omogoča, da za vsako komponento določimo strošek obdelave odpadnih količin le-te ali pa da mu podamo strošek za obdelavo odpadnega toka (mešanica komponent!). Druga možnost je opisana v osmem poglavju in je za neizkušene uporabnike bolj uporabna. Oblika jezička izpolnjena za komponento A je prikazana na sliki 3 – 4.

Pure Component Properties for : A	
IDs Physical (Constant) Physical (T-dependent)	Aqueous Economics Pollutant Categories
Purchasing Price	
Solling Price 0.000000	
Waste Treatment	
or Disposal Cost 0,000000 \$/kg	
Supplier	
Name	
Comments	
	7
OK	CancelHelp

Slika 3 – 4: Ekonomski parametri komponente A.

Podatkovne zbirke simulatorja ne vsebuje prednastavljenih masnih prodajnih in nabavnih cen! Cene komponent lahko poiščemo v literaturi ali na svetovnem spletu (npr. <u>www.sigmaaldrich.com</u>, <u>www.buyersguidechem.com</u>). Seveda je potrebno biti pozoren, kakšne letne količine surovin bodo v procesu potrebne, saj so cene odvisne od nabavne količine (npr.: 500 g NaOH = 14,6 \in ; 12 kg NaOH = 87,8 \in).⁴

Omenili bi še jezička **Aqueous** in **Pollutant Categories**, v katerih lahko med drugim podamo okoljske parametre komponent, recimo biološko potrebo po kisiku (BPK, ang. **BOD**), kemijsko potrebo po kisiku (KPK, ang. **COD**) itd.

⁴ Vir: <u>www.sigmaaldrich.com</u>; w_{NaOH} = 97%, kroglice; 10. 11. 2006.

Popolnoma enak delovni pristop uporabljamo pri registraciji mešanic, za katere sta nam na razpolago zgolj dve podatkovni bazi (**Design** in **User**). Ukazni meni se nahaja na lokaciji **Tasks \ Edit Stock Mixtures** ali **Ctrl+Shift+0**. Ponavadi ta meni uporabljamo kadar je potrebno definirati pufre ali pa mobilne faze za kromatografije. Pogosto se mešanice pojavijo tudi pri čistilnih postopkih (**CIP**; In-Place-Cleaning), kjer pogosto uporabljamo 0,5 g/mol NaOH. Ukazno okence je prikazano na sliki 3 – 5 in se NE nanaša na primer 1, ker v njem ne nastopajo mešanice. Privzeto je zrak vedno registrirani in ga ni možno izbrisati.

Mixtures in Database		-	Registered M	ixtures
Source DB Designer		User Defined	Name	Local Name
(NH4)2S04 (10% w/w) (NH4)2S04 (20% w/w) Air CH3C00H (0.5 M) CH3C00H (1 M) CH3C00H (1 M) CH3C00H (1 (2 M) CH3C00H (1 (2 M) CH3C00H (1 (0% w/w) Et0H (10% w/w) Et0H (10% w/w) Et0H (10% w/w) Et0H (50% w/w) Glycerol (50% w/w) H2S04 (1 M)	>> Register >>			. А Ш
Display By				
 Trade Name Local Name 		<u>N</u> ew	<u>D</u> elete	Properties

Slika 3 – 5: Registracija mešanic.

Mešanicam lahko podamo zgolj tri parametre, in sicer sestavo, gostoto in ceno. Na sliki 3 - 6 je prikazano okence za definiranje sestave natrijevega hidroksida (c = 5 mol/L). Meni odpremo s pritiskom ukaza **Properties** in jezička **Composition**.

Stock Mixture Properties for : NaOH IDs Composition Economics	(0.5 M)	
Available Ingredients	Ingredient Composition	
Pure Components Stock Mixtures	Ingredient Name Pure Comp? Mass %	
Source DB	1 Sodium Hydroxide 🕱 1,9600	
Nitrogen Oxygen Water	Delete View Mass % Mole %	
	Liquid/Solid Density (g/L) = a + bT, where T is in K, a 1021,00 and b 0,0000 Gaseous Density (from Ideal Gas Law or EDS)	
	OK Cancel Help	2

Slika 3 – 6: Okence za podajanje lastnosti mešanic.

Sestavo mešanic lahko definiramo na osnovi masnih ali množinskih deležev (v odstotkih). Pod okencem za podajanje sestave je ukazna vrstica za določitev gostote. Cene mešanic lahko podamo sami oz. jih simulator izračuna glede na cene čistih komponent in sestavo mešanice. Podatkovno bazo mešanic odpremo z Databanks \ Stock Mixtures ali Shift+F2.

Ko smo registrirali vse komponente, ukazno okence registracije, tako za čiste komponente kot tudi za mešanice, potrdimo z ukazom **OK**.

4 PROCESNA SHEMA IN TOKOVNICE

Po registraciji vseh potrebnih komponent in mešanic, katerim smo podali tako fizikalne kot tudi ekonomske parametre, lahko začnemo s sestavljanjem procesne sheme. Kadar načrtujemo kompleksnejšo procesno shemo, je smiselno, da najprej zarišemo le dve do tri procesne enote in jih oblikujemo, nato jih simuliramo. Če so masne bilance in sestave tokov za simulirane procesne enote smiselne, začnemo dodajati več procesnih enot.

Najprej je potrebno podati oz. narisati procesne enote (za primer 1 sta to reaktor in filter), v katerih se vršijo procesne operacije (npr. polnjenje opreme; ang. **Charge**). Seznam procesnih enot se nahaja na lokaciji **Unit Procedures**. Reaktor vstavimo s klikom ukaza **Unit Procedures** \ **Vessel Procedure** \ **in a Reactor**, nato s kazalcem kliknemo na prazni delovni prostor, nakar se izriše reaktor z vsemi priključnimi mesti (slika 4 – 1).

Slika 4 – 1: Reaktor iz primera 1.

Če slučajno izberemo napačno procesno enoto, lahko operacijo postavitve enote prekinemo s pritiskom tipke **Esc**. Kadar vstavljamo več enakih enot, ni potrebno vsakič uporabljati funkcije v ukaznem meniju, temveč vstavimo najprej eno enoto, nato držimo tipki **Shift** in **Ctrl**, ter kliknemo na prazen prostor delovnega prostora. Nezaželene procesne enote brišemo tako, da jih najprej označimo, nato pritisnemo tipko **Delete** ali **Edit** \ **Clear**. Za urejanje procesne sheme so pomembni še sledeči ukazi: **Edit** \ **Cut** (ali **Ctrl+X**), **Edit** \ **Copy** (ali **Ctrl+C**) in **Edit** \ **Paste** (ali **Ctrl+V**). Uporabniku predlagamo, da najprej uredi procesno shemo, nato poda procesne operacije, ki se v izbrani enoti vršijo, in šele zatem poda procesne parametre (npr. pretoke itd.).

Poleg procesnih enot je potrebno v procesno shemo vstaviti tudi procesne tokovnice. S stališča simulacije razlikujemo tri tipe tokovnic; vtoke, vmesne toke (povezujejo dve procesni enoti) in iztoke. Vrednosti parametrov za vtoke (temperatura, sestava, pretok itd.) mora uporabnik definirati sam, lastnosti vmesnih tokov in iztokov ni možno lastnoročno oblikovati! Z ekonomskega stališča ponovno ločimo tri tipe tokovnic:

- 1. Surovinske tokovnice,
- 2. Produktne tokovnice,
- 3. Tokovnice odpadnih snovi.

Simulatorju je potrebno lastnoročno podati ekonomsko tipizacijo tokov, kar je opisano v osmem poglavju. Tokovnice pričnemo risati tako, da aktiviramo ukaz **Connect Mode** (gumb, \square), ki se nahaja pod glavno ukazno vrstico simulatorja. Vtoke rišemo tako, da najprej kliknemo z miško na prazno delovno področje in nato povlečemo tokovnico do ustrezne vtočne točke (**Inlet Port** – vtočno mesto), označene s puščico, ki vodi v procesno enoto, ter kliknemo nanjo. Iz slike 4 – 1 je razvidno, da imajo procesne enote več vtočnih mest. Njihovo namembnost ugotovimo s pritiskom tipke **F1**, če hkrati označimo procesne enote. Ob pritisku se pojavi datoteka s podrobnim opisom procesne enote (npr. filtra iz primera 1) in njegovih karakteristik (slika 4 – 2).

Slika 4 – 2: Opisna datoteka filtra iz primera 1.

Vmesne tokovnice rišemo tako, da s tokovnico povežemo dve procesni enoti. Z miškinim kazalcem kliknemo na iztočno mesto (**Outlet Port**) prve procesne enote, podaljšamo tokovnico s potegom miške in kliknemo na vtočno mesto druge procesne enote. Iztočne tokovnice rišemo tako, da kliknemo na iztočno mesto procesne enote in potegnemo tokovnico v prazno delovno področje in tam izvedemo dvoklik.

V ENO vtočno mesto lahko uvedemo samo EN vtok! Enako velja za iztok in iztočno mesto. Preklapljanje med **Select Mode** (podajanje podatkov) in **Connect Mode** (risanje) se obrestuje samo, kadar rišemo več tokovnic. Če hočemo vrisati samo eno tokovnico, raje držimo tipko **Ctrl** in kliknemo na iztočno mesto (za vmesne toke in iztoke) ali v prazen prostor (za vtoke), ter postopamo kot poprej.

Če med risanjem tokovnic kliknemo na levi miškin gumb, lahko tokovnico upognemo za 90° in tako ustvarimo koleno. Če med risanjem kliknemo na desni miškin gumb, lahko brišemo tokovnico do zadnje ustvarjenega kolena. Lego kolena lahko naknadno spremenimo tako, da kliknemo z desnim miškinim gumbom na tokovnico in izberemo ukaz **Edit Elbows**.

Risanje tokovnic prekinemo s pritiskom tipke **Esc**. Če smo tokovnico že izrisali, pritisnemo najprej ikono **Select mode** poleg ukaza **Connect mode** in nato označimo zarisano tokovnico, ter pritisnemo tipko **Delete**. Slika 4 – 3 prikazuje primer izmišljene procesne sheme, za vajo jo poizkusite narisati sami! Poleg tega pa lahko narišete še procesno shemo za primer 1!

Slika 4 – 3: Primer procesne sheme.

Ko so tokovnice narisane, lahko z levim miškinim gumbom dvokliknemo na njih in odpre se simulacijski meni za ustrezno tokovnico (**Simulation Data**, slika 4 - 4), s katerim lahko podamo sestavo, pretok idr. lastnosti vtokov.

Stream Heptane (INPUT	Г> Р-1)			\mathbf{X}			
Composition, etc. Density	Env.Properties Comments						
Registered Ingredients Composition							
Components	Ingredient Name	Comp Flowrate ? (kg/batch)	Mass Comp. Conce [%] (a	ntration Extra- /L) Cell %			
C Stock Mixtures	1 Heptane	800,00000	100,000 681,5	56584 100,0			
A	>>>						
B							
L Heptane							
Oxygen Water							
	Delete	Set O Ingredient FI	ows O Mass Compo	sition			
	Total Flowrates	Auto-Adjust	Temperatur	e 25,00 °C 🛨			
	O Set Mass Flow 800,000	kg/batch	Pressure Activity D.00	e 1,013 bar 🛃			
	U Set Vol. Flow 1173,76	B L/batch	Activity (0,00				
	Units Massin jkg 💽	j Volume in jL [★] Com	position in 🗶 💽 U	Conc. in g/L			
	Time Hef. for Flows O Bate	ch U Sotere Lycla II I	Destination Cycle 🛛 🔾	Time Average h			
			1 Connect 1	Hala			
			Lancei	нер			

Slika 4 – 4: Ukazno okence Simulation Data za vtok heptana v reaktor.

Meni lahko aktiviramo tudi s klikom desnega miškinega gumba na tokovnico in izbiro ukaza **Simulation Data**. V ukazno okence lahko pogosto vstopimo tudi iz menijev za posamezne operacije (recimo **Charge Solvent**). Tedaj odpremo ukazno okence tokovnic z ukazom **Composition**.

V ukaznem okencu **Simulation Data** podamo tokovnicam sestavo, temperaturo itd. Kadar obravnavamo vmesne in iztočne tokove, lahko v tem okencu preverimo, če so rezultati simulacije primerni, ni pa možno spreminjati tokovnih parametrov (recimo temperaturo). Kadar obravnavamo vtoke, je potrebno podati, katere komponente vodimo v procesno enoto, kakšni so sestava, temperatura, pretok in tlak vtoka. Ukazno okence je sestavljeno iz dveh podokenc, eno na sredini in drugo na levi strani glavnega okenca. Iz levega podokenca izbiramo uporabljene komponente (**Components**) ali mešanice (**Stock Mixtures**). Snov registriramo z dvoklikom ali pritiskom na puščico ob seznamu. Prav tako lahko podamo masno sestavo toka (**Mass Composition**) ali posamične pretoke komponent (**Ingredient Flows**). Za primer 1 je potrebno definirati sestavo treh tokov; S-102, S-103 in vnos heptana. Vnešene mase so znane in jih definiramo v okencu **Set Mass Flow** v kg na šaržo.

Pomembna funkcija, ki se v tem meniju pojavi je, **Auto-Adjust**. Uporabili jo bomo za vtok S-106 iz slike 2 – 5. Kadar jo vklopimo, simulator izračuna surovinske potrebe glede na obseg operacije, s katero je tok povezan. V našem primeru bo avtomatično določil potrebne količine čistilnega vtoka S-106. Podoben primer uporabe funkcije je recimo aeracija medija v fermentorju. Potrebno je definirati sestavo vtoka, torej sterilni zrak, nakar aktiviramo funkcijo **Auto-Adjust**. Simulator bo izračunal pretok zraka glede na njegovo porabo pri fermentaciji.

5 PROCESNE OPERACIJE

Potem ko smo določili, katere procesne enote bodo nastopale v procesni shemi, lahko začnemo podajati vsaki enoti procesne operacije (reakcijo, filtracijo, elucijo itd.), ki se bodo v tej enoti izvršile. V ustrezni meni vstopimo tako da z levim miškinim gumbom dvokliknemo na ustrezno ikono procesne enote, ali enkrat kliknemo z desnim miškinim gumbom na ikono procesne enote in kliknemo **Add / Remove Operation**. Prikaže se ukazno okence, ki je vidno na sliki 5 – 1. Slika se nanaša na reaktor iz primera 1.

Operation Sequence for Procedure: P-1 (in V-101)							
Available Operations Active Charge CIP Cool Crystallize Distill Evacuate Extract / Phase Split Ferment (Kinetic) Ferment (Stoichiometric) Gas Sweep Heat Hold Pressurize Pull In Pull Out Purge / Inert React (Equilibrium) React (Kinetic) React (Stoichiometric) SIP Split (Component Flow) Transfer In	>> Insert >> >> Add >>	Operation Sequent Charge Solvent (Charge) Charge Reactant A (Charge) Charge Reactant B (Charge) React (Batch Stoich. Reaction) Transfer to PFF-101 (Transfer Out)	ce				
Transfer Out Vaporize / Concentrate Vent		Delete	Rename				
		OK Cancel	Help				

Slika 5 – 1: Ukazno okence za urejanje operacij v reaktorju.

Na levi strani okenca je prikazan seznam z možnimi operacijami za specifično procesno enoto. Operacije dodajamo z ukazoma Add in Insert, ter brišemo z ukazom Delete. Ukaz Insert bo novo operacijo postavil PRED izbrano operacijo, ukaz Add bo postavil novo operacijo ZA izbrano operacijo. Operacijo lahko tudi preimenujemo, recimo namesto Charge, napišemo Napolni procesno enoto, z ukazom Rename. Na ta način reaktorju in filtru iz primera 1 določimo operacije, ki se v njih izvršijo.

Ko podamo vse potrebne procesne enote in definiramo vse potrebne procesne operacije, ki se v njih vršijo, je potrebno simulatorju podati ustrezne delovne parametre. Zato najprej z desnim miškinim gumbom kliknemo na procesno enoto (npr. reaktor), pojavi se seznam menijev. Prvi meni je **Operation Data**, v katerem podajamo vrednosti potrebnih parametrov. Če je prisotnih več operacij v procesni enoti, se odpre seznam le-teh, ko postavimo miškin kazalec na **Operation Data**.

V nadaljevanju bomo opisali procesne operacije, ki se pojavijo v primeru 1. Med posameznimi operacijami se lahko gibljemo s pomočjo puščic na dnu ukaznega okna. Dodatno bi opozorili, da so vsa ukazna okenca **Operation Data** sestavljena iz večjega števila jezičkov. Vsa ukazna okenca **Operation Data** vseh procesnih operacij vsebujejo jezičke **Operation Conditions**, Labor, Description in Scheduling. Jeziček **Operation Conditions** je različno oblikovan glede na izbrano procesno enoto.

5.1 CHARGE

Ukazno okence vsebuje šest jezičkov, najbolj pomembna sta **Operation Conditions** in **Labor**. Slika 5 – 2 prikazuje odprt jeziček **Operation Conditions**, za operacijo Charge Solvent (to je v našem primeru heptan).

Charge Solvent (Charge)
Oper.Cond's Volumes Emissions Labor, etc. Description Scheduling
Charge Using Input #1 : Heptane
Amount
O Mass 800,000 kg
O Volume 1173,768
Duration
Setup Time 5,00 min 👤
Process Time
Calculated Based on
Mass Flowrate 4089,395 kg/h
Set by Master-Slave Relationship Setup
another operation or string of operations.
Ignore Labor
<

Slika 5 – 2: Prikaz jezička Operation Conditions procesno operacijo Charge.

Simulatorju je treba najprej definirati, katera tokovnica je vtok. V okencu **Charge Using** poiščemo ustrezno oznako vtoka. Gumb ob tem okencu (**Composition**), nam omogoča definiranje sestave vtoka, kar smo obravnavali v prejšnjem poglavju. Dodatno lahko v tem okencu podamo maso ali volumen vtoka, recimo za heptan je vnos 800 kg.

Zelo pomembna nastavitev je čas priprave procesne enote in čas trajanja operacije. Pogosto operacije zakasnijo, ker je potrebno določeno procesno enoto očistiti, ustvariti določen tlak idr., zato moramo podati neki pripravljalni čas (**Setup Time**). Trajanje operacije lahko uporabnik določi sam, čas trajanja lahko simulator izračuna glede na masni ali volumski pretok, nenazadnje je možno vklopiti funkcijo **Master-Slave Relationship**. V primeru 1 imamo podane vse potrebne čase, tako **Setup Time** kot tudi čase trajanja operacij, izračunani so glede na pretoke komponent A in B ter heptana. Ustrezne vrednosti parametrov vstavimo.

Master-Slave Relationship je zelo zanimiva in velikokrat zelo uporabna funkcija, predvsem za šaržne procese. S to funkcijo uravnavamo čas trajanja podrejene operacije (**Slave Operation**, v primeru 1 je to **Transfer Out** iz reaktorja) glede na nadrejeno operacijo (**Master Operation**, v primeru 1 je to **Filtration** v filtrski enoti). Simulatorju je potrebno podati še nadrejeno enoto (filter PFF-101). Omenjene nastavitve so prikazane na sliki 5 – 3 in so veljavne za operacijo **Transfer Out**, ki se pojavi v sklopu reaktorja iz primera 1.

Master-Slave Relationship Setup							
Slave Operation Transfer to PFF-101 in P-1 (V-101)							
Master Procedure							
Same as Slave Operation's Procedure							
P-1 (in V-101)							
Another Procedure							
P-2 (in PFF-101)							
Match Duration Per Cucle							
Match a Single Operation							
Match a Sequence of Operations							
Starting With (none)							
Ending With (none)							
OK Cancel Help							

Slika 5 – 3: Ukazno okence za podajanje Master-Slave odnosa.

Pomemben jeziček ukaznega okenca je **Emissions**, v katerem podajamo karakteristike morebitnih emisij. Če vemo, da se emisije pojavijo, moramo aktivirati ukaz **Perform Emission Calculations**. Nato simulatorju podamo, katere snovi se emitirajo in kolikšen je njihov prostorninski delež. Najprej označimo okence **Emitted ?**, nato še okence **Set By User** in določimo delež emisij (**Emission %**). Ukazno okence je prikazano na sliki 5 – 4 in se nanaša na operacijo **Charge Solvent** iz primera 1, saj je heptan lahko hlapljivo organsko topilo. Opozorili bi, da lahko izračun deleža emisij prepustimo simulatorju, tako kot smo to storili v primeru 1 na spodnji sliki.

Charge Sol	lvent (Charge)								
Oper.Cond	s Volumes Emissi	ons Labor, e	tc. Descriptio	n Scheduling					
🔀 Perfo	R Perform Emission Calculations								
	Component Emission Data								
	Component	Emiliard 2	Cat Bullian	Emission %					
1	A			0,000					
2	В			0,000					
4	L Heptane	×		0,000					
5	Nitrogen	Ē		0,000					
7	Water			0,000					
Vent C	ondenser								
	On at Temperatu	are 20,00)]℃ [Ŧ					
	C Off								
<< 0K	0K >>		OK	Cancel		Help			

Slika 5 – 4: Podajanja parametrov za emisije.

5.2 TRANSFER IN/OUT

Ta operacija je slična operaciji **Charge**. Potrebno je definirati masni delež prenesene snovi v odstotkih, lahko pa tudi definiramo preneseno maso ali volumen snovi. Časovni potek operacije se nastavi popolnoma enako kot pri operaciji **Charge**. Na sliki 5 – 5 je prikazana oblika okenca za procesno operacijo **Transfer Out** (operacija v filtru, za katero poznamo masni iztok).

Transfer out (Transfer Out)
Transfer out (Transfer Out) Oper.Cond's Emissions Labor, etc. Description Scheduling Transfer Out Using Output #2: Kolac Amount Set Percent 100,00 % of vessel contents Set Mass (scalable) 81,346 kg Set Volume (scalable) 96,236 L Duration Set by User Set by User 8,13 min Calculated Based on Outmatic Flowrate Volumetric Flowrate 100,00 kg/min Set by Masser-Slave Relationship Setup Match the duration of this operation to the duration of another operation or string of operations. Ignore Labor Ignore Labor
Cancel Help

Slika 5 – 5: Ukazno okence operacije Transfer Out.

5.3 REACT

Ko odpremo ukazno okno reakcije (simulator pozna tri reakcijske modele: kinetični, ravnotežni, stehiometrični), zapazimo večje število jezičkov na zgornje robu okna (slika 5 – 6).

eact (Batch Stoich. Reaction)	
Oper.Cond's Volumes Fed Batch Reactions Emissi	ions Labor, etc. Description Scheduling
Thermal Mode ● Set Final Temp. 50,00 *C ▲ ● Adiabatic ● Set Duty ● Heating 1932,60 kcal/h ▲	Duration Setup Time 0,00 min Process Time 6,00 h Pressure Set by User
O Cooling 0,00 kcal/h 🛃	Pressure 1,013 bar 🐳
Heat Transfer	Power Consumption (for Agitation, etc.)
Inlet Temp. 152,00 °C Outlet Temp. 152,00 °C Rate 3,97 kg/h €	 Set Specific Power 0,000 kW/m3 ± Set Power 0,00 kW ±
<< 0K 0K >> 0K	Cancel Help

Slika 5 – 6: Ukazno okence operacije React.

Večino jezičkov že poznamo, opisali bomo samo dva, ki ju še nismo spoznali, in sicer **Operation Data** operacije **React** in jeziček **Reactions**. V jezičku **Operation Conditions** lahko podamo termodinamske parametre (recimo za primer 1 končno temperaturo v reaktorju itd.), tlak, čas trajanja operacije itd. V **Reactions** pa definiramo potek reakcije.

Jeziček **React** je osrednjega pomena v večini procesov, saj je v njem možno podati, katere komponente bodo reagirale, da bomo proizvedli želen produkt. Na desni strani reakcijskega ukaznega okenca (slika 5 – 7) so vidne posamične reakcije, ki se vršijo v definirani procesni enoti.

React (Batch Stoich, Reaction)		
Oper.Cond's Volumes Fed Batch Hi Reaction Data	eactions Emissions Labo	r, etc. Description Scheduling Reaction Sequence
Name Reaction #1	1 Reaction #1	
Reaction-Limiting Component A		
Reaction Extent		
O Set 95,000 %		
Based on O Reaction-Limitin O Ref. Comp. [fr	ig Component	
Calculate to Achieve	none)	1
Reaction Stoic	hiometry	
Component	Stoich. Coeff. 🛛 🔼	
A	-1,00 📃	
В	-1,00	
С	1,00	
Heptane	0,00	
Nitrogen	n nn 🔛	
Stoichiom. Coefficients	🔿 Mass 🖸 Molar	
View Reaction Stoic	hiometry Details	
Reaction Heat Enthalpy 0,0 kcal/kg for Reference Component [(none)]	· · · · · · · · · · · · · · · · · · ·	Add Insert
at Heference Temperature 25,0 <	ГС	Cancel Delete Rename

Slika 5 – 7: Jeziček Reactions procesne operacije React.

Ponovno imamo ukaze Add, Insert, Rename in Delete, s katerimi lahko dodajamo ali odstranjujemo reakcije. Prvi pomembnem parameter je obseg reakcije oz. presnova reakcije (Set Reaction Extent), glede na limitirajočo komponento (Reaction-Limiting Component) ali glede na poljubno izbrano komponento (Reference Component). Alternativno lahko simulatorju določimo da naj obseg reakcije preračuna glede na končno masno gostoto komponente, ki mu jo podamo (Calculate to Achieve). Za primer 1 je dovolj, da podamo obseg reakcije 95 % glede na limitirajočo komponento.

Osrednji prostor okenca predstavlja polje za vnos stehiometrijskih koeficientov reakcije. Najprej bi opozorili na ukazni polji za definiranje stehiometrijskih koeficientov, in sicer glede na maso ali glede na množino. Kot smo na začetku zapisali, je biokomponentam zelo težavno določiti natančne fizikalne lastnosti (molsko maso endotoksinov, plazmidov itd.). Kadar izberemo možnost podajanja množinskih stehiometrijskih koeficientov, se simulacija izvaja glede na množinski račun. Kadar označimo možnost podajanja masnih stehiometrijskih koeficientov, se simulacija izvaja glede na masni razpad, tako da ni nujno poznati natančne molske mase komponent, temveč zgolj ocenjene vrednosti. Pri simuliranju farmacevtskih procesov večinoma uporabljajo masne stehiometrijske koeficiente.

stran 32

V stehiometrijskem ukaznem okencu imamo na levi strani podane komponente, na desni strani vstavljamo masne ali množinske stehiometrijske koeficiente. Reaktantom podamo negativni predznak, da ponazorimo njihovo porabo. Končno obliko reakcije lahko razberemo s klikom ukaza **View Reaction Stoichiometry Details** (slika 5 – 8).

Stoichiometry Balance for Reaction #1									×	
Reactants					F	Products				
Component	Molar Coeff.	MW	Mass Coeff.			Component	Mole Coeff.	MW	Mass Coeff.	
А	1,00	150,00	150,00			С	1,00	175,00	175,00	
В	1,00	25,00	25,00							
					L					
Total Mass 175,000				<u> </u>				Total M	ass 175,00	0
						ОК	Cancel		Help	

Slika 5 – 8: Ukazno okence View Reaction Stoichiometry Details.

Če masna bilanca za reakcijo ni smiselna, recimo da se porabi 10 kg reaktantov, nastane pa 5 kg produktov, simulator javi napako. Kadar definirate reakcijo, OBVEZNO preglejte če je masa reaktantov ENAKA masi produktov! Pod glavnim okencem lahko podamo še termodinamske parametre reakcije, če so nam ti na voljo. V primeru 1 imamo samo eno enostavno reakcijo, namreč ena molekula komponente A reagira z eno molekulo komponente B, kar daje eno molekulo komponente C.

Pogosto so potrebni za izvajanje operacij delavci, zlasti če nimamo visoko avtomatiziranih procesov. V jezičku **Labor** lahko določimo, koliko delavcev potrebujemo za izvajanje operacije, kakšne so potrebe po pogonskih sredstvih, kakšna je poraba električne energije itd. Ukazno okence je prikazano na sliki 5 – 9.

Charge Solvent (Charge)		X
Oper.Cond's Volumes Emissions Labor, etc. Description	n Schedulii	ng
Labor		
Labor	Amount	Units
1 Operator	2,00	labor-hrs/hr
Add Labor	Cretero Lab	Ċ(
Auxiliary Utilities	Auxilia	ry Power
Heating	Pric	e 10,00 ¢/kWh
Agent Steam	Rat	e 0,00 KW 🛨
Price 420,00 ¢/ton		
Rate 0,00 kg/h	Equipr	nent Capacity Utilization
Duty 0,00 kcal/h	Ca	Iculated Value 80,07 %
Cooling	For T	hroughput Analysis Use
Agent Cooling Water	0	Calculated Value
Price 10,00 ¢/ton	0	Assume (100%)
Rate 0,00 kg/h	0	Assume (0%)
Duty 0,00 kcal/h		
	,	
<< OK OK >> OK	Cance	el Help

Slika 5 – 9: Jeziček Labor procesne operacije Charge Solvent.

Ti parametri so zlasti pomembni pri ekonomski analizi procesa, saj iz njih simulator izračuna letne stroške delovne sile in pogonskih sredstev. V primeru 1 delovna sila ne igra vloge, zato ohranimo prednastavljene vrednosti simulatorja.

5.4 FILTER

Ukazno okno operacije je prikazano na sliki 5 – 10. Operacijo bomo opisali za procesno enoto Plate and Frame Filter, ki ga uporabljamo v primeru 1.

Filtration (Cloth Filtrat	ion)	
Oper.Cond's Labor, etc.	Description Sched	duling
Particulate Compo	onent Removal	Duration
Component	% Removed	Setup Time 0,00 min 👤
B	0,000	Filtration Time
C Heptane	95,000	Set by User 2,915 h
Nitrogen	0,000	Filtrate Flux 200,000 [L/m2·h
Water	0,000	May Cake Thiskness 15.00
Cake Dryness		Cake Thickness 4,63 cm
LOD 35,0 Cake Porosity 0,40) % v/v	Power
Filtrate Stream Output #:	3 : (S-107)	✓ Set Specific Power 0,00 kW/m2 € ✓ Set Power 0,00 kW €
, .		
< ОК ОК >	>	OK Cancel Help

Slika 5 – 10: Ukazno okence filtracije.

V tem primeru imamo na razpolago zgolj štiri jezičke. Novi jeziček je samo pod geslom **Operation Data**. Pri drugih procesnih enotah, ki jih uporabljamo za filtracijo (rotacijski filter idr.), je jeziček **Operation Conditions** sličen. V osrednjem okencu moramo simulatorju podati delež odstranjenih komponent. Nato lahko podamo še čas trajanja operacije, čas priprave procesne enote, karakteristike zadržane snovi itd. Ponovno vstavimo podatke iz primera 1.

5.5 CAKE WASH

Miller by Charles	Duration
washin Stream	Duration
Input #1 : (S-109)	on Setup Time 0,00 min 👤
Volume	Filtration Time
	O Set by User 30,000 min
Relative 1,00 vol/vol cake	Calculated Basad on
Absolute 95,75	Wash Flux 93,559 L/m2-h
Wash Out Stream	Wash Type
Output #4 : (S-108)	Displacement O Slurry

Ukazno okence (slika 5 – 11) je strukturirano podobno kot v tekstu že prej omenjena okenca. Za primer 1 je potrebno podati čas trajanja operacije in način pranja kolača.

Slika 5 – 11: Ukazno okence za operacijo Cake Wash.

Če so bili vsi podani parametri iz primera 1 prav vstavljeni, bi naj simulacija bila izvedljiva. V nasprotnem primeru simulator javi napako. V nadaljevanju bomo uporabnike še seznanili, kako lahko dimenzionirajo opremo (v primeru 1 to ni bilo potrebno) in kako lahko podajajo celokupne časovne parametre (recimo letno število šarž za primer 1).

Seveda ni bilo možno obdelati vseh procesnih enot in procesnih operacij v tem povzetku, zato uporabnikom simulatorja priporočamo, da pritisnejo tipko **F1**, ko se pojavi napaka, in si pazljivo preberejo opis problematične procesne enote. Elektronska zbirka napotkov pogosto vsebuje tudi območja velikosti posameznih parametrov.

6 DEFINIRANJE LASTNOSTI PROCESNIH ENOT

V tem poglavju bomo predstavili, kako simulatorju definirati dimenzije uporabljenih procesnih enot. Najprej je potrebno izbrati procesno enoto in jo narisati. Nato kliknemo na ikono procesne enote z desno miškino tipko in kliknemo na meni **Equipment Data**, v katerem lahko definiramo dimenzije (npr. višina, premer) ter kapaciteto procesne enote, njene ekonomske parametre (npr. nakupna cena), ter material izdelave. Do posameznih okenc vstopamo preko jezičkov (**Purchase Cost**, **Adjustments** itd.). Opisali bomo najbolj pomembne jezičke (**Equipment**, **Purchase Cost**, **Adjustments** in **Consumables**) za reaktor iz primera 1.

6.1 Equipment

Pomembna odločitev v tem okencu je: ali bomo podali dimenzije procesne enote sami (**Rating Mode**) ali jo naj izračuna simulator (**Design Mode**). Kadar imamo vklopljeno funkcijo **Design Mode**, moramo podati simulatorju maksimalno kapaciteto procesne enote. Če se pri simuliranju izkaže, da izračunana kapaciteta presega podano maksimalno kapaciteto, simulator težavo reši tako, da v proces vstavi večje število enako velikih procesnih enot. Slika 6 – 1 prikazuje ukazno okence za reaktor iz primera 1, uporabili smo **Design Mode**.

V-101 (Stirred Reactor)	X
Equipment Purchase Cost Adjustments	Consumables Scheduling Throughput Comments Allocation
Selection Select V-101 Request Name	Description Name V-101 Type Stirred Reactor Number of Units 1 Max Volume 40000,00 L ↓ Volume 1628,37 L ↓ Max Allowable 90,00 % Height / Diameter 12,500 Height 2,349 m ↓
Size Calculated (Design Mode)	Diameter 0,940 m 보 Design Pressure 1,520 bar 보 ASME Vessel 🔀
Set by User (Rating Mode)	Fractionation Column Attached Number of Trays 5
	OK Cancel Help

Slika 6 – 1: Ukazno okence za specifikacijo dimenzij reaktorja.

6.2 Purchase Cost

Nastavitve v tem jezičku (slika 6 – 2) so zelo pomembne za ekonomsko analizo procesa. V primeru 1 smo uporabljali prednastavljene vrednosti.

V-101 (Stirred Reactor)
Equipment Purchase Cost Adjustments Consumables Scheduling Throughput Comments Allocation
Purchase Cost 447277 \$ (adjusted for year of analysis: 2006)
Cost Estimation Options
Set By User 0 \$
Fised Independent of year of analysis
O For Reteience Vear 2006
O Built-in Model
User-Defined Model Parameters
UK Lancel Help

Slika 6 – 2: Jeziček za nastavitev nabavne cene procesne enote.

Simulator za izračun investicij v opremo upošteva nabavno ceno procesnih enot kot osnovo za izračun. To ceno nato pomnoži z množitelji, ki jih uporabnik lahko definira, ali pa uporabi prednastavljene vrednosti le-teh. Ti množitelji se nanašajo na vgradnjo, vzdrževanje opreme idr. Do množiteljev dostopimo tako, da z desnim miškinim gumbom kliknemo na prazen delovni prostor in izberemo **Section: Main Section \ Capital Cost Adjustments**. Omenjeni meni bomo opisali v osmem poglavju. Dodatne množitelje definiramo še v jezičku **Cost Adjustments**.

Velika prednost simulatorja je, da lahko uporabimo prednastavljeno nakupno ceno, ali jo določimo sami. Dodatno lahko uporabimo interni ali eksterni ekonomski model za izračun nabavne cene opreme. Lasten ekonomski model lahko vstavimo tako, da označimo ukaz **User-Defined Model** in kliknemo **Parameters**.

6.3 Cost Adjustments

V jezičku **Cost Adjustments** (slika 6 – 3) lahko podamo število rezervnih procesnih enot (**Number of Standby Units**), konstrukcijski material procesnih enot itd.

V-101 (Stirred Reactor)	X
Equipment Purchase Cost Adjustments Consumables Scheduling Throughput Comments Allocation	
Number of Standby Units	
Capital Cost	
Portion of Purchase Cost (PC) Already Depreciated 0,00 %	
Material SS316 Material Factor 1,00 Installation Cost 0,30 x PC	
Operating Cost	
Usage Rate 100,00 \$/equipment-h	
Availability Rate 100,00 \$/h	
Maintenance Cost 0,10 x PC	
OK Cancel Help	

Slika 6 – 3: Nastavitev množiteljev za izračun nakupne cene reaktorja.

Zlasti pri bioprocesih in farmacevtskih procesih je izredno pomembno imeti na zalogi rezervno opremo, da lahko kompenziramo načrtovane in tudi nenačrtovane procesne izpade. Trebe je upoštevati, da v takšnih procesih proizvajajo majhne količine izredno dragih snovi, zato bi vsak procesni izpad pomenil ogromno ekonomsko škodo. Kot primer vzemimo recimo proces za pridobivanje 215 g/a plazmidne DNK, ki se uporablja v genskih terapijah. Cena proizvoda je recimo 75 000 USD/g. Če bi letno izvedli 40 šarž, si lahko sami preračunate obseg ekonomske škode, če izpade le ena šarža. Količina rezervnih enot vpliva na skupno višino investicij v opremo, ne vpliva na stroške vzdrževanja in delovne sile.

Podamo lahko še množitelje, ki se nanašajo na stroške vgradnje opreme v proces, na izbor konstrukcijskega materiala enote in na stroške vzdrževanja. Pogost konstrukcijski material procesnih enot v farmaciji je SS316, nerjavno jeklo – **Stainless Steel**. V okencu **Material** je možno izbrati druge materiale, izbor vpliva na nabavno ceno.

6.4 Consumables

Pogosto so pri določenih procesnih enotah prisotni potrošni materiali, recimo stacionarne faze kromatografij, filtracijske membrane, plastične bioreaktorje itd. Stroške teh metarialov lahko vključimo v ekonomsko analizo. To še posebej velja za stacionarne faze kromatografij, pri katerih lahko pod jezičkom **Consumables** (slika 6 – 4) določimo, katero vrsto stacionarne faze bomo uporabili in koliko ciklov bo ta vzdržala, preden jo je potrebno zamenjati. V primeru 1 potrošnega materiala ni bilo, zato podajamo primer za kromatografisko kolono.

C-101	(PBA Chromatography (Column)						×		
Equipr	ment Purchase Cost Adjust	ments Consuma	bles Schedul	ing Throughpu	t Comments	Allocation				
Re	esin									
	Type Dtt PBA Chrom Resin Is First Resin Capitalized? Image: Cost Cost Cost Cost Cost Cost Cost Cost									
Oth	her Consumables									
	Name	Consumption Rate	Quantity Meas, Units	Consumption Basis	Total Amount (per use)	Replac. Frequency	Replac. Basis			
			Add	lieleto						
				ОК	Cancel		Help	p		

Slika 6 – 4: Nastavitev parametrov potrošnega materiala.

Pri bioprocesih so ti stroški pogosto ogromni, odvisni so od kapacitet kolon. Ponavadi potrebujemo za izolacijo produktov iz fermentacijskega medija večje število različnih tipov kromatografij in s tem seveda večje količine stacionarnih faz. Simulator vsebuje dokaj široko podatkovno bazo lastnosti potrošnega materiala (cene, življenjsko dobo). To bazo lahko urejamo na lokaciji **Databanks \ Consumables**, v glavni ukazni vrstici programa.

7 ČASOVNA USKLADITEV NAČRTOVANEGA PROCESA

Operacije v procesnih enotah trajajo določen čas, ki je zelo pomemben za načrtovalca, saj se vedno teži k čim krajšem času proizvodnje. V prejšnjih poglavjih smo nakazali, da je potrebno vsem operacijam določiti čas priprave (**Setup Time**) in čas trajanja (**Duration Time**). V tem poglavju bomo predstavili orodje, s katerim je možna enostavna optimizacija delovnega urnika procesa. Grafično lahko delovni urnik predstavimo z Ganttovim diagramom, ki ga generiramo z ukazom **Tasks \ Gantt Charts \ Operations GC** ali **Ctrl+2**. Odpre se okence, ki je razdeljeno na dva dela (slika 7 - 1).

	Oper	ations Gantt Chart (Single Batch)					X
File	Edit	Update Chart View Preferences					
Γ	A	Tesh	Duration	Start Time	End Time	8 16	h
		1 45 K	(h)	(h)	(h)		h
		🖃 Complete Recipe	10.40	0.00	10.40		
		🖃 P-1 in V-101	9.44	0.00	9.44		
		Charge Solvent	0.28	0.00	0.28	Charge Solvent (0.28 h)	
		Charge Reactant A	0.12	0.28	0.40	Charge Reactant A (0.12 h)	
		Charge Reactant B	0.12	0.40	0.52	Charge Reactant B (0.12 h)	
		React	6.00	0.52	6.52	React (6.00 h)	
		Transfer to PFF-101	2.92	6.52	9.44	Transfer to PFF-101 (2.92 h)	
		- P-2 in PFF-101	3.88	6.52	10.40		
		Filtration	2.92	6.52	9.44	Filtration (2.92 h)	
		Cake wash	0.50	9.44	9.94	Cake wash (0.50 h)	
		Transfer out	0.47	9.94	10.40	Transfer out (0.47 h)	
<					>		
For H	Help, p	press F1				NUM	11.

Slika 7 – 1: Ganttov diagram za proces iz primera 1.

Na levi strani okenca je prikazan seznam aktivnosti (parametri za celotni proces, procesno enoto in posamezne operacije). Na desni strani okenca so ti podatki predstavljeni grafično v omenjenem Ganttovem diagramu. Izpis lahko prilagodimo lastnim potrebam. V meni za spreminjanje grafičnega prikaza vstopamo v ukazni vrstici okenca **Preferences \ Styles \ Gantt Chart**.

Poleg grafičnega prikaza ukazno okence omogoča urejanje procesnih časov. Kadar z desnim miškinim kazalcem kliknemo na obarvano prečko (slika 7 – 2), se pojavi seznam, na katerem izberemo **Recipe Scheduling Info** ali **Procedure Data** ali **Operation Data**, odvisno od prečke na katero kliknemo (celotni procesni čas, čas obratovanja posamične enote, čas trajanja posamične operacije). V teh menijih, ki smo jih že opisali, nato spremenimo ustrezne čase.

File	per Edit	ations Gantt Chart (Single Batch) Update Chart View Preferences												
	0	Task	Duration (h)	Start Time (h)	End Time (h)	2	4	6	8	10	12	14	16	h h
		🗖 Complete Recipe	10.40	0.00	10.40		1		Recipe Sch	edulina Inf	0			
		- P-1 in V-101	9.44	0.00	9.44			-		ioddin ig 111				
		Charge Solvent	0.28	0.00	0.28	Charge :	Solvent (O.	28 h) _	Visual Style	ə				
		Charge Reactant A	0.12	0.28	0.40	Charge	Reactant A	A (0.12	Collapse					
		Charge Reactant B	0.12	0.40	0.52	Charge	Reactant	B (0.1:	Expand Al					
		React	6.00	0.52	6.52				React	(6.00 h)				
		Transfer to PFF-101	2.92	6.52	9.44					T1	ansfer to	PFF-101 (2	2.92 h)	
		- P-2 in PFF-101	3.88	6.52	10.40									
		Filtration	2.92	6.52	9.44					Fi	ltration (2	2.92 h)		
		Cake wash	0.50	9.44	9.94						Cake was	h (0.50 h)		
		Transfer out	0.47	9.94	10.40						Trans	fer out (0.4	7 h)	
			,)	1										
Sor He	eln n	iress E1			>	1							l I	

Slika 7 – 2: Aktivacija ukaza Recipe Scheduling Info.

Ko spremenimo časovne parametre, kliknemo **Update Chart** v zgornji ukazni vrstici. V ukaznem okencu **Recipe Scheduling Info** (slika 7 – 3) je možno podati letni delovni čas, število letno izvedenih šarž in druge celokupne časovne parametre procesa. Na spodnji sliki so že vstavljeni časovni parametri za primer 1.

Recipe Scheduling Information	
Scheduling Inputs	Scheduling Outputs
Annual Operating Time (AOT) Available 240,00 h Utilized 238,40 h Number of Campaigns Per Year 1 Number of Batches Per Year (Nb)	Batch Time 10,40 h Min Cycle Time 9,44 h Max Number of Batches per Year (Nb,max) 25 Unit Procedure with Longest Duration
 Calculated Set by User Recipe Cycle Time Set by User 12,00 h f Set Cycle Time Slack 2,56 h Update 	Equipment with Longest Occupancy - Scheduling Bottleneck - V-101 OK Cancel Help

Slika 7 – 3: Nastavitev časovnih parametrov za celotni proces.

Ganttov diagram lahko kopiramo v druge aplikacije Windows, recimo v Microsoft Word. V ukaznem okencu poiščemo meni Edit in kliknemo Copy Gantt Chart (grafično upodobitev) ali Copy Gantt Spreadsheet (številske podatke grafa). Nato odpremo program Word in kliknemo Paste.

Pri načrtovanju je zelo pomembno določiti ozka grla procesa. Časovno ozko grlo procesa je procesna enota, ki obratuje predolgo in povzroča časovno neoptimalni izkoristek drugih enot. Časovna ozka grla procesa lahko določimo grafično, tako da vstopimo v meni **View Equipment Occupancy Chart \ Multiple Batches**. Simulator ima prednastavljen grafični prikaz dveh šarž. Število prikazanih šarž spremenimo tako, da z desnim miškinim gumbom kliknemo na prazen prostor in nato izberemo **Set Number of Batches** ter podamo novo število šarž. Na sliki 7 – 4 je prikazanih pet šarž za proces iz primera 1, v katerem smo v ukaznem okencu **Recipe Scheduling Info** podali, da med zaporednimi šaržami ni neizkoriščenega časa (**Set Cycle Time Slack** je enak 0!).

Slika 7 – 4: Ganttov diagram za pet zaporednih šarž.

Na levi strani Ganttovega diagrama imamo zbrane oznake procesnih enot (V-101 in PFF-101), na abscisi je časovna skala. Procesna enota, pri kateri je časovni interval med zaporednima šaržama najkrajši, je časovno ozko grlo procesa. Časovna ozka grla določajo, kolikšno bo maksimalno število letno izvedenih šarž. Časovno ozko grlo procesa iz primera 1 je fermentor V-101.

Ko ugotovimo, katera procesna enota je problematična, lahko vstavimo več istih procesnih enot v procesno shemo in s tem časovno ozko grlo premaknemo na drugo procesno enoto. To storimo tako, da označimo ustrezno procesno enoto in nato z desnim miškinim gumbom kliknemo na izbrano enoto ter izberemo ukaz **Procedure Data**. Slika 7 – 5 prikazuje okence, ki se odpre.

Uperating	Mode
Ø Batch) / Semi-Continuous
	Number of Cycles per Batch 1
	Cycle Time 9,44 h
	Absolute Start Time 0,00 h
	Absolute End Time 9,44 h
	Equipment
	Name V-101
	Number of Lipits
	(operating in parallel)
	🔀 Operate in Stagger Mode
	Use 2 extra sets of equipment units
🔘 Conti	92028
A C	continuous procedure in a batch plant is assumed to have a cle time equal to the recipe cycle time (i.e., it is ON all the
tim	e). The procedure will be ignored in process scheduling and
VVIII	be missing nom the Ganti Chart.

Slika 7 – 5: Ukazno okence Procedure Data za reaktor iz primera 1.

Nato označimo funkcijo **Operate in Stagger Mode** (vzporedno delovanje) in podamo število dodatnih enot. V zgornji primeru dodamo npr. dva nova fermentorja, skupaj jih imamo torej tri. Rezultat je prikazan na sliki 7 – 6, časovno ozko grlo se sedaj pojavi pri filtru, saj je razdalja med dvema zaporednima šaržama pri njem najkrajša.

Slika 7 – 6: Modificirani Ganttov diagram za proces iz primera 1.

Sedaj bi lahko dodali še dodatni filter, da bi ponovno premaknili časovno ozko grlo na reaktor. Opozarjamo, da vključevanje dodatnih enot vpliva na višino investicij v opremo. Graf iz slike 7 – 6 lahko prenesemo v Word tako, da z desnim miškinim gumbom kliknemo na graf in izberemo ukaz **Copy**, nato odpremo Word in kliknemo **Paste**.

8 EKONOMSKI PARAMETRI

Omenili smo že, da lahko cene komponent definiramo v meniju **Edit Pure Components**, nabavne cene opreme podamo v meniju **Equipment Data**. Potrebno je še upoštevati stroške obdelave odpadkov, plače operativnega kadra, stroške pakiranja izdelka ter morebitne druge stroške. Stroške obdelave odpadkov lahko nastavimo v meniju **Tasks \ Stream Classification** (slika 8 – 1, velja za primer 1).

	Re	venue, Raw M	aterial a	nd Wa	ste Streams							X	
					Classification	of Ou	tput Strea	ms					
		Stream Na	ime	CI	Classification Treatment/Disposal Cost or Selling Price (\$/kg or \$/entity)			al Cost or or \$/entity)	Set By User	Hazardous?	\Box		
	1	S-104		Emissio	n		0,10	0000)	X	Г		
	2	Kolac		Reven	Je		195,0	0000	00	Г	Г		
	3	S-108		Aqueou	us Waste		0,10	0000)	X	Г		
	4	S-109		Aqueou	us Waste		0,10	0000)	X	П		
	Classification of Input Streams Main Product Rate												
		Stream Name	Classifi	cation	Purchase Pric Processing Fr (\$/kg or \$/en	e or ee tity)	Dr Set By Used for reportin User \$/amount produ			eporting proc produced or	porting production cost in roduced or processed		
1	ſ	Heptane	Raw Mat	erial	0,360000				Stream				
2		S-102	Raw Mat	erial	10,000000		Π		Kolac	Ŧ			
3		S-103	Raw Mat	erial	15,000000		Π		O Sho	w Revenue	enue Streams Only		
4		S-106	Raw Mat	erial	0,360000		Γ		Show All Streams				
									Flow Tot. Sing Comp	al (Entire Stre gle Compone ponent C Canc	eam Flow) nt in the Stream el Hel	₽	

Slika 8 – 1: Klasifikacija tokov za primer 1.

Odpadne tokove (**Waste Streams**) moramo specificirati (trdni, tekoči, organski odpadki ali emisije), kar seveda vpliva na ceno obdelave. Poleg tega lahko določimo stroške, povezane s surovinskimi vtoki (**Raw Materials**). Te stroške simulator izračuna glede na od uporabnika podane nabavne cene komponent pri registraciji in glede na sestavo toka. Pomembno je tudi določiti tok, ki generira dohodek (**Revenue Stream**) - izračuna se glede na sestavo končnega produktnega iztoka in glede na podane prodajne cene komponent. Ni nujno, da uporabnik prepusti ocenitev vrednosti simulatorju, lahko jih vpiše tudi sam. To stori tako, da označi funkcijo **Set By User** in vrednost vtipka v ustrezno okence. Kadar imamo več produktnih iztokov, lahko v spodnjem desnem kotu okenca določimo, kateri je 'glavni' v ukaznem polju **Main Product Rate**. Dodatno je potrebno določiti množitelje, ki jih simulator uporablja za izračun direktnih fiksnih stroškov. Ukazno okence odpremo s klikom desnega miškinega gumba na prazen delovni prostor in izberemo **Section: Main Section \ Capital Cost Adjustments**. Slika 8 – 2 prikazuje ukazno okence z vsemi nastavljivimi množitelji, za primer 1 jih ni potrebno spreminjati.

Section: 'Main Section' (Capital Investment)						
DFC Cost Alloc Misc						
Direct Fixed Capital (DFC) 3465,33 thous.\$ Set by User DFC Portion Already Depreciated 0,00 %						
DFC Estimation						
Direct Fixed Capital (DFC) = Direct Cost (DC) + Indirect Cost (IC) + Other Cost (OC)						
Direct Cost (DC) Use Site Data 🗖 Indirect Cost (IC) Use Site Data 🗖						
Piping (A) 0.35 x PC Instrumentation (B) 0.40 x PC Insulation (C) 0.03 x PC Construction (I) 0.35 x DC Electrical Facilities (D) 0.10 x PC Buildings (E) 0.45 x PC Yard Improvement (F) 0.15 x PC Auxiliary Facilities (G) 0.40 x PC PC = Equipment Purchase Cost Contractor's Fee 0.05 DC = PC + Installation + A+B+C+D+E+F+G Contingency 0.10						
Equipment Purchase Cost (PC) Estimation Purchase Cost (PC) = Equipment Cost + Unlisted Equipment Purchase Cost Unlisted Equipment Purchase Cost 0,20 x PC Unlisted Equipment Installation Cost 0,50 x Unlisted Equipment's PC						
OK Cancel Help						

Slika 8 – 2: Ukazno okence Capital Cost Adjustments.

Operativne stroške procesa lahko naravnamo v meniju **Operating Cost Factors**. Do njega dostopimo enako kot do ukaznega okenca za direktne fiksne stroške, le da tokrat izberemo **Section: Main Section \ Operating Cost Factors**. Slika 8 – 3 prikazuje možne nastavitve.

Facility-Dep	endent Cost		
Based o	n Operating Parameters		
I⊠ Ba Fac I Ba Facil	ed on Equipment-Usage/Availability Rate ity-Dependent Cost = SUM {(Equipment Rate) x (Equipment Usage Basis Availability Basis ed on Facility Availability Rate ty-Dependent Cost = (Facility Availability Rate) x (Hours of / Facility Availability Rate [500,000 \$/1acil	t Hours)} iment Use Site Data 🗖 Availability) ity-h	
,			
Based o Facility-D Mainter	Capital Investment Parameters) pendent Cost = (Depreciation) + (Maintenance) + (Miscella ance	aneous)	
Based o Facility-D Mainter	Capital Investment Parameters] pendent Cost = (Depreciation) + (Maintenance) + (Miscella ance Use Equipment Specific Multipliers	ineous)	
Based o Facility-D Mainter	Capital Investment Parameters) pendent Cost = (Depreciation) + (Maintenance) + (Miscella ance Use Equipment Specific Multipliers Estimate as 6.00 % DFC (Direct Fixed Capital)	aneous)	
Based o Facility-D Mainter	Capital Investment Parameters] pendent Cost = (Depreciation) + (Maintenance) + (Miscella ance Use Equipment Specific Multipliers Estimate as 6,00 & DFC (Direct Fixed Capital) neous	uneous) Use Site Data 🗖	
Based o Facility-D Mainter C Miscella	Capital Investment Parameters) pendent Cost = (Depreciation) + (Maintenance) + (Miscella ance Use Equipment Specific Multipliers Estimate as 6,00 % DFC (Direct Fixed Capital) neous Insurance 1,00 % DFC	aneous) Use Site Data 🦵	

Slika 8 – 3: Ukazno okence Operating Cost Factors.

Za izkušene uporabnike je pomemben še ukazni meni **Economic Evaluation Parameters**, katerega odpremo tako, da z desnim miškinim gumbom kliknemo na prazen prostor in izberemo **Economic Evaluation Parameters**. V tem meniju lahko podrobno nastavimo način financiranja, predvideno življenjsko dobo procesa, stroške odstranitev škartnega materiala itd.

Ekonomsko ovrednotenje procesa zaženemo z ukazom **Tasks \ Perform Economic Calculations** ali **Ctrl+6**. Rezultati so razvidni na povezavi **View \ Executive Summary**. V njem so izpisani višina investicij, dohodki, operativni stroški itd. Ogled ekonomskih rezultatov je možen na lokaciji **View \ Executive Summary**, izpis le-teh je mogoč na lokaciji **Reports**.

9 IZPIS REZULTATOV

Rezultati simulacije so masne in energetske bilance ter ekonomska analiza procesa. V prejšnjih poglavjih smo predstavili, kako je možno med simulacijo preverjati sestave tokovnic, vsebnost procesnih enot itd. Za uporabnika je pomembno, da te podatke zbere v smiselno in pregledno celoto, ter jih vstavi v končno poročilo o simulaciji.

Izpis ekonomskih rezultatov zaženemo z ukazom **Reports** \ **Economic Evaluation**. Preglednice z masnimi bilancami, ekonomsko analizo, procesno shemo itd. je možno podati in natisniti v različnih formatih (pdf, excel, text, html). Prikazne možnosti rezultatov določimo v meniju **Reports** \ **Options**, slika 9 – 1.

Ge	"hroughput Environmer eneral (Default) Stream	ntal Em	iissions Input Data Equipment Evaluation Cash Flow Itemized Cost
Ехро	ort Format		Page Options
PDF	• •		Printer/Page Setup Use Default
			Customize
Curre	ency	1	Page Numbers
Euro	• <u> </u>	lit Currencies	Omit O On Header O On Footer
	Symbol Euro		
Exch	n. Rate to US\$ 1,5 🗷 🤅	Get By User	Date
Nurs	eric Format		Omit O On Header O On Footer
recam	Decimal Separator Comma ()	Ŧ	Logo
т	housand Separator Space ()	<u>→</u>	Omit On Header O On Footer
			Dir C:\Documents and Settings\Jur
	Variable	Decimals 🔷	
1	Material Amounts (Hourly)	2	Title Use Default 🔀
2	Material Amounts (Daily)	2	Custom
3	Material Amounts (Annual)	2	
4	Material Amounts (per Batch)	2	Additional Header/Footer Info
5	Material Amounts (per Unit Mass	2	Header
6	Material Amounts (per Product E	2	Footer
7	Stream Mass Flows	2	Page Breaks
8	Stream Vol Flows	2 🔽	Force section page breaks
			Place charts on separate page
Char	ts		
X	nclude Charts		IX Use Background Colors

Slika 9 – 1: Ukazno okence za nastavitev oblike izpisa.

Zlasti pomembno je, v kakšni obliki podamo procesno shemo. Za boljše razumevanje procesa priporočamo, da študenti določen čas posvetijo tudi oblikovanju procesne sheme (nastavitve pisav, barv, oblikovanje tokovnic itd.). Optični prikaz lahko urejamo na lokaciji Edit **Flowsheet Options \ Preferences \ Default Styles**. Lahko pa tudi oblikujemo vsako procesno enoto posamično tako, da z desnim miškinim gumbom kliknemo na ikono procesne enote ter nato izberemo recimo **Edit Labels,** kjer lahko urejamo oznake enot. V meniju **Styles** lahko urejamo pisave, barve in razporeditev oznak za procesne enote.

10 ZAKLJUČEK

Pričujoči dokument zgolj povzema uporabniška navodila, ki jih podaja proizvajalec simulatorja in naj bralcem služi kot osnova za delo s SuperPro Designer®-jem. Spodaj podajmo še nekaj koristnih opomb.

Opombe:

- Polji Name in Trade Name lahko obsegata največ 31 znakov,
- Številka CAS in polje Local Name lahko obsegata največ 15 znakov,
- Polje Tag Name tokovnic lahko obsega največ 15 znakov,
- N/A številka CAS komponentam ni bilo možno podati številke,
- Podatek za tvorbeno entalpijo se v trenutni različici ne uporablja.