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Predictive QSPR modeling of the acidic
dissociation constant (pKa) of phenols in
different solvents
Kunal Roya* and Paul L. A. Popelierb**
Given the importance of ionization constant (pKa) o
J. Phys. Or
f phenols in explaining the mechanism of their toxicity, it is of
interest to develop theoretical models for the prediction of pKa values of phenols in different solvent systems. In the
present communication, we developed predictive QSPR models for pKa values of substituted phenols in seven
different solvent systems such as water, dimethyl sulfoxide (DMSO), methanol, dimethylformamide (DMF), acetonitrile
(AN), isopropanol, and tert-butanol using quantum topological molecular similarity (QTMS) descriptors. The data set
was divided into training and test sets, and models were developed using partial least squares (PLS) regression from
the training set. The predictive potential of the developed models was assessed by the prediction of pKa values of the
test set compounds. Root mean square error of prediction (RMSEP) values were used as objective function for
selection of the best models in different solvent systems. Good predictive models were developed in all solvent
systems except isopropanol. Considering all seven solvent systems, distance descriptors give consistently good results
whereas ellipticity descriptors are of less importance. Moreover, plots of ‘variable importance in the projection’ (VIP)
for the best models highlight the importance of the bond connecting the phenolic oxygen to the aromatic ring. This
suggests the diagnostic nature of QTMS descriptors in identifying the reaction center in acidic dissociation of phenols.
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INTRODUCTION

Phenolic compounds have commercial uses as intermediates of
dyes and organic synthesis processes and also as antiseptics and
disinfectants.[1] Phenols are frequently detected in industrial
waste water, including those from the manufacture of insecti-
cides, herbicides, dyes, pulp, paper, and other synthetic
chemicals.[2] Due to their many origins and widespread uses,
phenols are widely distributed in the ecosystem and they have
potential to cause environmental pollution.[1] The toxic potency
of phenols is controlled by both hydrophobicity and ionization.[3]

Various types of phenols also occur in different natural products
such as fruits, vegetables, and teas. The phenolic moiety is found
in natural radical scavengers (Vitamin E) as well as synthetic ones
such as butylated hydroxyanisole.[4] These compounds show a
wide action spectrum involving antitumor, antiviral, antibacterial,
cardioprotective, prooxidant, and antimutagenic activity.[5]

Therefore, a confusing problem with phenols is that there are
‘good’ phenols and ‘bad’ phenols. Phenolic compounds may
both scavenge and generate reactive oxygen species, and the
development of phenolic antioxidants for clinical use includes
strategies tominimize the prooxidant activity. [6] This necessitates
application of a rational strategy to understand the relationship
between structure and functions of phenols.
Quantitative structure–property relationships (QSPRs) re-

present predictive models derived from the application of
statistical tools correlating property (physicochemical property
g. Chem. 2009, 22 186–196 Copyright �
or therapeutic and toxic activity) of chemicals (industrial
chemicals/drugs/toxicants/environmental pollutants) with des-
criptors representative of molecular structure and/or property. A
QSPR model is regarded as a scientifically credible method
for determining properties of untested chemicals. Any QSPR
modeling should ultimately lead to statistically robust models
capable of making accurate and reliable predictions of properties
of new compounds. QSPRs of toxicity of phenols have been
studied by different groups of authors.[1–12] The ionization
2008 John Wiley & Sons, Ltd.
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constant (pKa) of phenols was found to be one of the important
contributors of toxicity of phenols.[2,3,5,12] Phenols elicit toxic
responses by one of two mechanisms: polar narcosis and
uncoupling of oxidative phosphorylation. Polar narcosis has been
reported to be the main mechanism of phenol toxicity and it can
be modeled well using hydrophobicity and pKa values of phenols
as descriptors.[1] The ability to act as oxidative uncouplers is also
associated with pKa values.[11] Thus, pKa values are useful in
predicting the mechanism of toxic actions of phenols.[12]

Experimentally derived pKa values are not always available
from the literature. Considering the importance of pKa values in
predicting the mechanism of toxic action of phenols, it is of
interest to develop theoretical models for prediction of pKa
values of phenols in different solvent systems. Although most
experimental values of pKa of phenols have been determined in
water, the importance of nonaqueous solutions is increasing.[13]

QTMS descriptors are known to model well properties and
activities for which the electronic factor is important.[14–28] In the
present communication, we developed predictive QSPR models
for pKa values of substituted phenols in seven different solvent
systems, such as water, dimethyl sulfoxide (DMSO), methanol,
dimethylformamide (DMF), acetonitrile (AN), isopropanol, and
t-butanol.
1

MATERIALS AND METHODS

The experimental pKa values of phenols were taken from
Reference.[13] Excluding iodine containing compounds (because
of the lack of prestored basis sets), a total of 90 phenolic
compounds were considered. The experimental pKa values were
available for 62 phenols for water, 35 phenols for DMSO,
31 phenols for methanol, 22 phenols for DMF, 21 phenols for AN,
and 13 phenols for each of isopropanol and t-butanol (Table 1).
The details of QTMS descriptors can be found in previous

publications.[16,21] In summary, QTMS descriptors focus on bond
critical points (BCP), which occur when the gradient of the
electron density (rr¼ 0) vanishes at some point between two
bonded nuclei. The electron density at a BCP can be related to
bond order via an exponential relationship. At a BCP, the Hessian
of r has two negative eigenvalues (l1< l2< 0) and one positive
one (l3> 0). Eigenvalues express local curvature of r in a point:
negative eigenvalues are curvatures perpendicular to the bond,
while the positive eigenvalue measures the curvature along the
bond. The sum of the eigenvalues is the Laplacian, denoted by
r2r, which is ameasure of howmuch r is concentrated (r2r< 0)
or depleted (r2r> 0) in a point. The descriptors rb and l3 can be
interpreted as measures of s character whilst l1þ l2 measures
the degree of p character.[29] Another measure of p character for
homopolar bonds is ellipticity which is defined as e¼ l1/l2 – 1. In
the QTMS bond descriptor vector, there are two more
components, the kinetic energy density K(r) and a more classical
kinetic energy G(r), as defined earlier.[30] Additionally,
the equilibrium bond length (Re) has also been used as one of
the descriptors along with other QTMS descriptors.
To start, an estimated geometry was obtained using the

program GaussView,[31] which was then passed on to the ab initio
program GAUSSIAN03.[32] The wavefunctions were computed at
B3LYP/6-31þG(d,p) level of theory. Subsequently, the wavefunc-
tions were read by a local version of the program MORPHY98,[33]

which locates the BCPs using an automatic and robust
algorithm.[34] The BCP descriptors of eight bonds common to
J. Phys. Org. Chem. 2009, 22 186–196 Copyright � 2008 John W
all phenolic compounds (six C—C aromatic bonds, one C—O
bond, and one O—H bond) were considered as variables for the
statistical model development. The bonds are shown in Fig. 1.
Finally, the program SIMCA[35] was used for partial least squares
(PLS) analysis of the data set. This procedure generalizes and
combines features from principal component and multiple
regression.[36,37] The principal component that PLS generates are
called latent variables (LV). To avoid overfitting, a strict test for the
significance of each consecutive PLS component is necessary and
no new LVs are added when they become nonsignificant. This
ensures that the QSAR equations are selected based on their
ability to predict the data rather than to fit the data.
Cross-validation (CV) is a practical and reliable method of testing
this significance.[37] With CV, parts of the data are kept out of
model development, and then predicted by the model, and
compared with the actual values. This procedure is repeated
several times until every observation has been kept out once and
only once. For every component, the overall PRESS/SS is
computed, where PRESS is the squared differences between
observed Y and predicted values when the observations were
kept out and SS is the residual sum of squares of the previous
component. A component is considered significant if PRESS/SS is
statistically smaller than 1.0.[35]

For the development of the PLS models, a hierarchical method
was adopted. Initially, PLS models were developed for each
category of descriptors, i.e., r,r2r, e, l, K, G, and equilibrium bond
lengths. Note that l1, l2, and l3 are clubbed together into the
class of l. There are 3� 8¼ 24 descriptors in the class of lwhile in
other classes there are only eight. At the outset, models were
tried with all available descriptors, but subsequently, descriptors
with smaller VIP (variable importance in the projection) values
were gradually deleted until a model with the best Q2

(leave-one-seventh-out cross-validation) was obtained. Then,
using the important descriptors appearing in the PLS equations
of different descriptor classes, a PLS model for a mixed set of
descriptors was developed. In the case of leave-some-out (LSO)
cross-validation, a given fraction of compounds were deleted
from the data set and a model was developed from the reduced
set. The deleted compounds were predicted from the model,
which was developed excluding these compounds. The process
was repeated until all compounds were deleted at least once. The
outcome from the cross-validation procedure is cross-validated
R2 (LSO-Q2) which is used as a criterion of both robustness and
predictive ability of the model.
External validation is an important tool for proper selection of

QSPR models. The validation strategies check the reliability of the
developed models for their possible application on a new set of
data, and confidence of prediction can thus be judged.[38,39] In
many cases, enough new chemicals being unavailable for
prediction purpose, the original data set is divided into a training
set and a test set. For the present work, every fourth compound of
the data set was assigned to the test set. For external validation, a
predictive coefficient R2pred was calculated via Eqn (1)

R2pred ¼ 1�
P

ðYobs � YpredÞ2P
ðYobs � YTrainingÞ2

(1)

where Yobs and Ypred respectively represent the observed and
predicted property values of the test set compounds, while
YTraining represents the mean observed value of the training
set. The R2pred value is in part controlled by the magnitude ofP

ðYobs � Y trainingÞ
2
. This difference is in turn dependent on the
iley & Sons, Ltd. www.interscience.wiley.com/journal/poc
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Figure 1. Numbering of atoms in the phenol skeleton

QSPR MODELING OF pKa OF PHENOLS

1

selection of training set members. Thus, R2pred may not truly
reflect the models’ predictive capability for the test set (or a new
data set) since R2pred depends on the training set members. So,
squared correlation coefficient values between the observed and
predicted values of the test set compounds with intercept (r 2)
and without intercept (r 20) can be calculated to assess
performance of the prediction. The parameter r /20 is the squared
correlation coefficient between the predicted (Y) and observed
(X) values of the test set compounds setting intercept to 0.
According to Golbraikh and Tropsha[40] models are considered
acceptable, if they satisfy all of the following conditions:
(i) Q2> 0.5, (ii) r 2> 0.6, (iii) r 20 or r020 is close to r 2, such that
[(r 2� r 20)/r

2] or [(r 2� r
02
0)/r

2]< 0.1 and 0.85� k� 1.15 or 0.85�
k
0 � 1.15. When the observed values of the test set compounds
(Y-axis) are plotted against the predicted values of the compounds
(X-axis) setting intercept to 0, slope of the fitted line gives the value
of k. Interchange of the axes gives the value of k

0
.

Moreover, the squared regression coefficient (r 2) between
observed and predicted values of the test set compounds does
not necessarily indicate that the predicted values are very near to
observed property values (there may be considerable numerical
differences between the values in spite of maintaining an good
overall intercorrelation). To better gauge the external predictive
capacity of a model, a modified r 2 term (r 2m), defined before,[41] is
given in Eqn (2)

r2m ¼ r2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q
Þ (2)

Note that r 2 is always larger than r 20. In case of good external
prediction, predicted values will be very close to observed
property values. So, the r 2 value will be very near to the r 2o value,
and in the best case, r 2m will be equal to r 2. For some solvent
systems, the number of test set compounds is considerably
smaller thus making regression based external validation
parameters (R2pred, r

2, r 2m) less appropriate. Thus, an additional
parameter root mean square error of prediction (RMSEP) was
calculated according to Eqn (3)

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðYobs � YpredÞ2

NTest

s
(3)

In the above equation, NTest indicates the number of test set
compounds.
For all the developed models, we have reported the coefficient

of variation (R2), leave-one-seventh-out cross-validation R2 (Q2)
for the training set and the R2pred, r

2, r 20, r
2
m and RMSEP values

for the test set. The final models were also subjected to a
randomization test. In this test, the property data (Y) are
randomly permuted keeping the descriptor matrix intact,
followed by a PLS run. Each randomization and subsequent
J. Phys. Org. Chem. 2009, 22 186–196 Copyright � 2008 John W
PLS analysis generates a new set of R2 and Q2 values, which are
plotted against the correlation coefficient between the original Y
values and the permuted Y values. The intercepts for the R2 and
Q2 lines in this plot are a measure of the overfit. A model is
considered[42] valid if R2int< 0.4 and Q2

int< 0.05.
RESULTS AND DISCUSSION

RMSEP values were used as objective function for selection of the
best models in different solvent systems. The statistical qualities
of different models are shown in Table 2.

QSPR of pKa values of phenols in water

Acidic dissociation constant (pKa) values in water were available
for 80 phenols among which 62 phenols were assigned to the
training set and 18 phenols to the test set. Model W1, developed
from eight distance descriptors and two LVs, showed 76%
predicted variance (leave-one-seventh out cross-validation) while
the R2 value was 0.825. In order to properly judge the reliability of
a model we rate external validation parameters higher than the
internal prediction statistics. The application of model W1 to the
test set led to a predictive R2 value of 88.4%. The squared
correlation coefficient (r 2) between the observed and predicted
values of the test set compounds was found to be 0.912 while the
same setting intercept to zero was 0.883, reflecting a moderate
decrease in the value of r 2m to 0.757. The RMSEP value of model
W1 was 0.651. The RMSEP values of models W2-W5 (based on r,
r2

r, ", and l descriptors) were greater than that of model W1.
Model W6, which is based on the K descriptors, showed RMSEP
value of 0.584 and R2pred and r 2m values of 0.906 and 0.880,
respectively. Model W7, based on G descriptors, was slightly
inferior to model W6. Based on descriptors appearing in models
W1 through W7, model W8 was developed, which was slightly
inferior to both models W6 and W7. Thus, based on external
validation statistics, model W6 was the best one for predicting
reliable pKa values of phenols in water. The ellipticity based
model (W4) showed poor internal and external validation
statistics. The VIP plot (Fig. 2) of model W6 showed K descriptor
of the bond C1—O7 (bond connecting phenolic oxygen to
aromatic nucleus) as the most important descriptor, which is
justified considering the dissociation constant of the phenolic
compounds as the response parameter. In earlier work,[43] a
QTMS study on a set of 19 singly substituted para and
meta-phenols highlighted the O—H bond as having the highest
VIP values when looking at the principal components of the
descriptors, although the C—O bond featured prominently as
well. When the ‘raw’ descriptors were considered then the four
highest VIP values were found to be a mixture of C—O and O—H
descriptors. Although O—H is expected to be the most affected
by the acid dissociation, C—O is the next most sensitive. Their
relationship appears to be too tight to be clearly separable by the
statistical analysis we use.

QSPR of pKa values of phenols in DMSO

Acidic dissociation constant (pKa) values in DMSO were available
for 44 phenols among which 35 phenols were assigned to
the training set and nine phenols to the test set. Models were
developed from the training set and test set prediction was done
to check validity of the developed models. The best model
based on internal validation was model D5 developed from 14 l
iley & Sons, Ltd. www.interscience.wiley.com/journal/poc
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QSPR MODELING OF pKa OF PHENOLS

1

parameters and two LVs showing a Q2 value of 0.887. Based on
external validation (RMSEP value), model D6 developed from six K
parameters and one LV was the best one showing excellent R2pred
(0.968) and r 2m (0.916) values. The next best model based on the
RMSEP value was mixed model D8 based on 11 descriptors and
two LVs. The R2pred and r 2m values of this model were 0.933 and
0.864, respectively. The ellipticity based model (D4) showed poor
internal and external validation statistics. The VIP plot (Fig. 2) for
model D6 showed the K descriptor of C1—O7 bond again as the
most important variable.

QSPR of pKa values of phenols in methanol

Data were available for 39 compounds out of which 31 were
taken to form the training set and eight compounds the test set.
The regression based external validation parameters (especially r 2m)
were poorer than those of the water and DMSO systems.
However, the RMSEP values were in similar range. The best
model according to RMSEP was M7, which is based on seven G
descriptors and three LVs showing Q2 and R2pred values of 0.938
and 0.718, respectively. However, because of the considerable
difference between r 2 and r 20 values, the r 2m value was
comparatively smaller (less than 0.5) reflecting the difference
in observed and predicted values of the test set compounds.
However, considering the small size of the test set, the RMSEP
value is a more reliable statistic here for external validation
than the regression based parameters. The next best model
was M6 with five K descriptors and two LVs showing a R2pred value
of 0.524. However, the r 2m parameter value for this model was
very low. As for the water and DMSO systems, the ellipticity based
model (M4) showed poor internal and external validation
statistics. The VIP plot (Fig. 2) for model M7 showed that the
most important variable is the G variable of the C1—O7 bond.
This bond was highlighted before in the VIP plots of models W6
and D6.

QSPR of pKa values of phenols in DMF

Of the available 28 compounds, 22 compounds were assigned to
the training set and six compounds to the test set. Based on
RMSEP values, model F5 developed from 13 l descriptors and two
LVs was found to be the best model. However, the RMSEP value of
model F5 was comparatively larger than the best models of the
water, DMSO and methanol systems (models W6, D6 and M7,
respectively). The predictive R2 value for model F5 was 0.850
while the r 2m value was 0.782. The next best model was model
F1 based on distance descriptors showing a higher value of r 2m
(0.926) than model F5. As in the previous three systems, the
ellipticity based model (F4) showed poor internal and external
validation statistics. According to the VIP plot (Fig. 2) of model F5,
the most significant descriptor was l3 of the C1—O7 bond, as
before.

QSPR of pKa values of phenols in AN

Out of 25 available compounds, 21 were assigned to the training
set and four compounds to the test set. Based on RMSEP values,
the best model was A7 comprising of six G descriptors and two
LVs. Model A7 showed excellent values of predictive R2 and r 2m
statistics. The next best model was A1 based on distance
descriptors having excellent Q2 and r 2m values (0.935 and 0.986,
respectively). Surprisingly, model A4 based on ellipticity des-
criptors showed an acceptable value of predictive R2 in this
iley & Sons, Ltd. www.interscience.wiley.com/journal/poc
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Figure 2. VIP plots for the best models for solvent (a) water W6; (b) DMSO D6; (c) methanol M7; (d) dimethylformamide F5; (e) acetonitrile A7;

(f ) isopropanol I5; and (g) t-butanol B8
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solvent system. The VIP plot (Fig. 2) of model A7 showed that the
most important variable was G descriptor of the C1—O7 bond.

QSPR of pKa values of phenols in isopropanol

The data were available only for 16 compounds out of which
13 compounds were taken to the training set and three
compounds to the test set. Though the number of available
compounds was considerably smaller, a preliminary attempt was
made to develop QSAR models out of which model I5 (built by
11 l descriptors and two LVs) emerged as the best one based on
the RMSEP values. However, the r 2m value of model I5 was below
0.5 and the predictive R2 value was just above 0.5. The ellipticity
basedmodel (I4) was miserably poor in both internal and external
Table 3. Occurrence of models of different descriptor types for th

Type of descriptors Water DMSO Methanol DM

Mixed Y Y
G Y Y Y
K Y Y Y Y
l Y
"
r2

r

r Y Y
Distance Y Y Y Y

‘Y’ indicates presence of a model of particular descriptor type in t

www.interscience.wiley.com/journal/poc Copyright � 2008
validation. The VIP plot (Fig. 2) of model I5 showed l3 of the
C1—O7 bond as the most important descriptor, as found before
for all other solvents.

QSPR of pKa values of phenols in t-butanol

Among 16 available compounds, 13 compounds were taken to
the training set and three compounds to the test set. Based on
RMSEP values, model B8 developed from 17 mixed descriptors
and two LVs emerged as the best one, showing a R2pred value of
0.885 and a r 2m value of 0.862. The next best model was B3 based
on Laplacian values showing a predictive R2 value of 0.821. The
r 2m value of this model was considerably lower (0.661). The
ellipticity based model (B4) was wretchedly poor in both internal
e best four models of each of different solvent systems

F AN Isopropanol t-butanol Total occurrence

Y Y 4
Y 4
Y 4

Y Y 3
0

Y Y 2
Y 3
Y Y Y 7

he best four models for different solvent systems.

John Wiley & Sons, Ltd. J. Phys. Org. Chem. 2009, 22 186–196



Table 4. List of R2int and Q2
int values from randomization test

of selected models for pKa of phenols in different solvent
systems

Model no. R2int Q2
int

W6 0.005 �0.221
D6 0.008 �0.181
M7 0.066 �0.440
F5 0.166 �0.300
A7 0.057 �0.366
I5 0.354 �0.254
B8 0.232 �0.286

QSPR MODELING OF pKa OF PHENOLS
and external validation. Unlike all other systems, the VIP plot
(Fig. 2) of model B8 showed the r descriptor of the C5—C6 bond
(Fig. 1) as the most important descriptor.
OVERVIEW

The best models in different solvent systems were selected based
on the RMSEP values of the corresponding test set compounds. For
each solvent we considered the best four models (Table 2). Table 3
shows the number of times a model occurs constructed from each
descriptor type. Distance descriptors are among the best four
models for all seven solvent systems. However, distance descriptor
based models never appear as the best model for a particular
solvent. Each of the K, G and mixed descriptor based models
appear in four out of seven solvent systems. The ellipticity based
models do not appear in the best four models in any solvent
system. Thus it may be concluded that considering all seven
solvent systems, distance descriptors give consistently good
results whereas ellipticity descriptors are of less importance.
Solute–solvent interactions involve charge–dipole, dipole–

dipole, dipole–induced dipole, and induced dipole–induced
dipole interactions, which are a function of both solute and
solvent properties. Different solvent properties like hydrogen
bond donation ability, electron pair donation ability, polariz-
ability, dipole moment etc. of solvent are important in
Table 5. External validation characteristics of different models for
Golbraikh and Tropsha[38]

Statistical parameters
Sl. no. Parameters W6 D6

1 r 2 0.909 0.959
2 r20 0.908 0.957

3 r’20 0.906 0.953

4 (r 2�r 20)/r
2 0.001 0.002

5 (r 2�r’20)/r
2 0.003 0.006

6 Minimum of 4 and 5 0.001 0.002
7 k 0.988 0.959
8 k’ 1.008 1.034

J. Phys. Org. Chem. 2009, 22 186–196 Copyright � 2008 John W
determining such interactions. When developing a unified
QSAR model for solutes in all solvents, one should consider both
solute and solvent properties[44]. Here we have considered the
BCP properties of solutes (phenols) only while developing the
QSAR models since it is very hard to develop a unified model for
all solvent systems without considering the solvent properties. It
is also difficult to predict the kind of interactions between a
phenol and a particular solvent without considering the solvent
parameters. However, the importance of different BCP descrip-
tors for different solvents suggests involvement of different
interactions between phenol and solvent depending on the
solvent properties. However, future work may include the
solvent explicitly by incorporating BCP properties of solute–
solvent van der Waals complexes. Jover et al. [13] developed a
unified neural network model for predicting pKa of phenols in
different solvent systems and they found that the hydrogen
bond donation ability and dipole moment of the solvent are
important in the development of a unified model for pKa of
phenols in different solvents.
In acidic dissociation of phenols, the phenolic O—H bond is

broken and this phenomenon is influenced by the electron
density around the oxygen atom. In case of substituted phenols,
the change in the electron density around the phenolic oxygen
atom is caused by varying substituents on the aromatic ring
through polar (resonance and inductive) effects. These effects are
transmitted from the aromatic ring to the phenolic oxygen via
the C—O bond using a conjugated system (double bond—single
bond—lone pair). Thus, the electronic environment of the
phenolic oxygen atom is immediately determined by the char-
acter of the C—O bond. Interestingly, the VIP plots of the best
models of all solvent systems (except t-butanol) suggest different
descriptors of the phenolic C1—O7 bond as the most important
variables. This signifies the diagnostic feature of the QTMS
descriptors in identifying important feature (C—O bond as
shown in bold line in Fig. 1) for the acidic dissociation of phenols.
The best models of different solvent systems were subjected to

a randomization test with 100 permutations (default [35] is 20) in
each case. For all the models tested, R2int values are less than 0.4
and theQ2

int values less than 0.05 (Table 4). This indicates that the
models are not obtained by chance. External validation
parameters of different models for pKa values of phenols in
different solvent systems according to Golbraikh and Tropsha[38]

are shown in Table 5
pKa values of phenols in different solvent systems according to

Model number

M7 F5 A7 I5 B8

0.868 0.955 0.994 0.489 0.973
0.642 0.922 0.965 0.483 0.96

0.818 0.941 0.974 0.151 0.947

0.260 0.035 0.029 0.012 0.013

0.058 0.015 0.020 0.691 0.027

0.058 0.015 0.020 0.012 0.013
0.966 1.100 1.008 0.982 0.978
1.03 0.902 0.99 1.016 1.022

iley & Sons, Ltd. www.interscience.wiley.com/journal/poc
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The calculated pKa values of phenols in different solvent
systems according to the best models are shown in Table 1.
CONCLUSION

Considering all seven solvent systems, distance descriptors give
consistently good results whereas ellipticity descriptors are of less
importance. The quality of the models was assessed by means of
the RMSEP values of an external test set. The diagnostic nature of
the QTMS descriptors could identify the bond connecting the
phenolic oxygen to the aromatic ring as the most important
feature for the acidic dissociation of phenols.
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[6] G. Schüürmann, A. O. Aptula, R. Kuhne, R.-U. Ebert, Chem. Res. Toxicol.

2003, 16, 974–987.
[7] R. P. Verma, S. Kapur, O. Barberena, A. Shusterman, C. Hansch, C. D.

Selassie, Chem. Res. Toxicol. 2003, 16, 276–284.
[8] C. D. Selassie, T. V. DeSoyza, M. Rosario, H. Gao, C. Hansch, Chem. Biol.

Interact. 1998, 113, 175–190.
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